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FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administra-

tion/Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Systems Development

Operation)

The goals of the SEL are (i) to understand the software

development process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of

reports that includes this document. The papers contained

in this document appeared previously as indicated in each

section.

Single copies of this document can be obtained by writing to

Systems Development Branch

Code 552

NASA/GSFC

Greenbelt, Maryland 20771
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SECTION 1 - INTRODUCTION

I

This document is a collection_f technical papers produced

by participants in the Software Engineering Laboratory (SEL)

during the period June i, 1987, through January 1, 1989.

The purpose of the document is to make available, in one

reference, some results of SEL research that originally ap-

peared in a number of different forums. This is the sixth

such volume of technical papers produced by the SEL.,--A-I-i_

though these papers cover-several topics_-related to_:soft_a_e__
._, ................ J %

englneering, they do not encompass the entire scope o!-SEL

activities an_ interests. Additional information ___5qut the_

SEL and its research efforts may be obtained fromthe_source_

listed in the bibliography at the end of thisd0cu_t.

For the convenience of this presentation, the twelve papers

contained here are grouped into three major categories:

• CZ,_"Software Measurement and Technology Studies)

• <z Measurement Environment Studies. -:_;

• _ Ada Technology Studies
--!

The first category presents experimental research and eval-

uation of software measurement and technology; the second

presents studies on software environments pertaining to

measurement. The last category represents Ada technology

and includes research, development, and measurement studies.

The SEL is actively working to increase its understanding

and to improve the software_development process at Goddard

Space Flight Center (GSFC). Futur_e_:effort_will be docu-

mented in additional volumes of the Collected Sof_e Enqi-

neerina Papers and other SEL publications.

5207
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SECTION 2 - SOFTWARE MEASUREMENT AND TECHNOLOGY STUDIES

The technical papers included in this section were originally

prepared as indicatedbelow.

• "The Effectiveness of Software Prototyping: A Case

Study," M. V. Zelkowitz, Proceedinqs of the 26th

Annual Technicai Symposium of the Washinqton, D.C.

Chapter of the ACM, June 1987

• "Measuring Software Design Complexity," D. N. Card

and W. W. Agresti, The Journ_l Qf Systems and Soft-

ware, June 1988

• "Quantitative Assessment of Maintenance: An Indus-

trial Case Study," H. D. Rombach and V. R. Basili,

Proceedinqs from£he Conference on Softw_r@ M_inte-

nance, September 1987

• "Resource Utilization During Software Development,"

M. V. Zelkowitz, The Journal Q( SMstems and Soft-

w_re, 1988
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THE EFFECTIVENESS OF SOFTWARE PROTOTYPING:

A Case Study
=

Marvin V. Zelkowitz
Department of Computer Science

University of MarylLnd

College Park, Maryland 20742

ABSTRA CT

_r_h_paper d/ae_se# resource utilization over the life
cycle o/software development, and dbeuaves the role
that the current "waterfall model" plays in the actual
softtoare life clscte, The effects of protot_iny are
measured with respect to the life CllCtS model.
Software production in the NASA environment was
analysed to mcaat_re these differences. The data col.
lected from thirteen different project" and one prate.
tFpe development were collected by the Software En-
oineerlng Laboratory at NASA Goddard Space Flight
Center and analyzed for similarities avd differences.
The results indicate that the waterfall model is not
vcr V real/uric in practice, and that a prototype develop.
meat follows a similar life cycle as a production
system..althouoh, for this prototype, issue• like system
design and the user interface took precedence aver i_-
awes each ea carrcctncu and robuctneu of the re#sit-

ing system.

KEN'WORDS: Life cycle, Measurement, Prototyping,
Resource utilization, Waterfall chart

1. Introduction

As technology impacts the way industry build•

software, there is increasing interest in understanding the
software development model and In measuring both the

processand product.New work_tatlontechnology,new
languages(e.g.,Ado, requirements and specification
languages)as wellas new techniques(e.g.,prototyp_ng,

lneudocode)are impactinghow softwareis builtwhich
furtherimpactshow management needsto addressthese
concerns in controllingand monitoring a softwm'e

development.

In thispaper,data are first presentedwhich analyze
severalfairlylargesoftwareprojectsfrom NASA God-

dard Space Flight Center (GSFC) and put the current
"waterfall" model in perspective. Data about software

costs, productlvity, reliability, modularity and other f_c-
tars ,re collected by the Software Engineering Labor_-
tory (SEL), a research group consistingof ind]vlduals

© 1957 Association for Computing Mschlnery, Inc.

Pecmlssioa fo cop)- withoul fee •1] o4" pmrl of ¢hi$ motet'in] Is gr•aU_d

pre.,_led thai the copies -.re not made or distributed for direct com-

mercial ,d_•ntage ' the ACM cop)rlght notlc_ and the title of tlte

public•ties •nd its date appeai, •nd notice is given that copying is

I_ permission of Ihe Assocleiion for Computing Machinery. To

_._ otherwise, or to republish, requires • fee sad/or specf1_ per.
uutss_a.

from NASA/GSFC, Computer SciencesCorporation,and
the Universityof Mmryland, for researchon improving
both the software product and the procem for bu_ldlng
such software [SEL 82]. The Software Engineering
Laboratory wu establbhedin 1976 to investigatethe

effectivenessof software engineering technlquesfor
developing ground Supp6_ soRware for NASA [BAS 78].
A recentprototyping experimentwas conductedand data
were collectedwhich compare thisprototypewith the
more tradltlonMway to buildsoftware.The paper con-
cludeswith comments on the roleof prototypingas a
softwaredevelopmenttechniqfie.

The softw,re development process is typically
product-drlven,and can be dividedinto six major llfe
cycle_ctivities,each associatedwith a specific"end pro-
duct" [WAS 83,ZEL 78]:

(1) Requirement_ phase and the publicationof i
requirementsdocument.

(2) Deaign ph_e and the creationof a designdocu-
ment.

(3) Code and Unit Test phase and the generation of
the source code library.

(4) System s'ni-e_g('a_;on ana/_¢silng phase and the

fulfillmentof thetestplan.

(5) Acceptance testphase and completion of the
acceptance test plan.

(S) Operation and Maintenance phase arm the
delivery of the completedsystem.

In orderto presentconsistentdata acrossa largenumber
of projects,this paper only focuseson the ]ntervml
between design and scdeptadce_estsnd involvesthe

actualimplementationof the •)'stemby the developer
group.

In thls paper, we will refer to the term activity as
the work required to complete a Specific task. For exam-
ple, the coding actlv]ty refers to all work done in gen-
erating the source code for a project, the design activity
refers to building the program design, etc. On the other
hand. the term phase will refer to that period of time
when • certain activity is supposed to occur, For exam-
ple. the Coding Phase will refer to that period of time

26TN ANNUAL TECHNICAL SYMPO$1UM

WAS_|N¢;O_ D.C. Cvt*,p_'t_ Of ACM

Gaiihersbuf 9, MD-June 11, 1987
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during a software development when coding artlvitles are

supposed to occur. It is closely related to management-
defined milestone dates for a project. But durins thls

period, other activitiesmay also occur.

IREQUIREMENTS

I

DESIGN

l

CODE

I I

INTEGRATION

J

ACCEPTANCE TEST

I I

OPERATION

I I

Lifecyclc Calendu Time _>

Ficu_ 1. TypicM Life Cycle

The waterfall model makes the mumptlou that all

activityof a certain type occurs during the phase of that

same name end phases do not overlap. Once a phase

ends, then the next phase begins. Th_ allrequirements

for a project occur during the Requirements Phase; Ml

design activity occurs during the Des|gn Phase. Once a

project has a design _eview m_.d enters the Cod]ng Phase,

then all activity is Coding. Since many companies keep

data based upon hours worked by calendar date, thls

model isvery easy to track. However, as Figure 1 shows,

activitiesoverlap and do not liein separate phases. We

willgive more data on this later.

2. The waterfall chart Is all wet

In the NASA/GSFC environment that we stud_ed,

the software life cycle follows a fairlystandard set of

activities[SEL 81]:

The reqm'rement$ actlvlty involves translating the

functlonM specificatlonconsisting of physical attributes

about the spacecraft to be launched into requirements for

a software system that is to be built.

The design aetlvky can be divlded Into two sub_c-

t|vitles:the preliminary deslgn activity and the detailed

desi#n activity. During prellminaxy deslgn, the major

subsystems are specified, input-output [nterfaees and

lmplementatlon strategiesare developed. During detailed

design, the system archltecture isextended to the subrou-

t[ne and procedure level. Data structures and formal

models of the system are defined. These models intrude

procedural descriptions of the system, datafiow descri_

tions, complete description of all user input,system out-

put, and input,-output files,operational procedures, func-

tional and procedural descriptions of each module, and

complete description of all internal interfaces between
modules.

The Codi,# and Unit Test activity involves the

translation of the detailed design Into s source program

in some appropriate programming [angua4_e (usually

FORTRAN). Each programmer will unit test each
module for appaxent correctnees.

The System Integration and Teat activity validates

that the completed system produced by the coding and

unit test activity meets its specifications.Each module,

as it is completed, is integrated into the growing system

and integration test is performed to make sure that the

entire package executes as expected. Functional testing

of end-to-end system capabilitiesis performed according

to the system test plan developed as pazt of the require-

ments activity.

In the Acceptance Test activity, the development

team provides a._lstance to the acceptance test team,

which checks that the system meets itsrequirements.

Operation and Maintenance activitiesbegin d'ter

acceptance testingwhen the system becomes operational.

For flight dynamics softwm-e at NASA, these activities

axe not slgniflcmatto the overallcoat. Most softwm-e pro-

duced ls highly reliable.In addltlon, the flightdynamics

software isusually not mission criticalin that a failureof

the software does not mean spacecraft failurebut simply

that the program has to be rerun. In addkion, many of

these programs {'i.e.,spacecra_'t)have limited lifetimesof

six months to about three years.

Table I presents the raw data on the fourteen pro-

jects analyzed in this paper. The thirteen numbered pro-

jects are all fairly large flightdynamics programs, rang-

ing in size from 15,500 linesof FORTRAN code to 80,513

llnesof FORTRAN, with an average size of 57,800 lines

of FORTRAN per system. The average work on these

projects was 89.0 staff months; thus, all represent

signifcant effort.The last project listed in Table I -

FDA$ - represents a prototype development and will be
discussed in more detaillater.

In moat organizations, phase data axe collected

weekly so that they are the usual reporting mechanism.

However, ]n the SEL, activity data axe also collected.

The data that are collectedconsistof nine possibleactivi-

ties for each component (i.e.,source progratn module)

worked on for that week. In this paper, these will be

grouped as Design activities,Cod;ng activities(code

preparation and unit testing),Integration testing,Accep-

tance testing and Other. Specific review meetings, such

as design reviews, willbe grouped with theirappropriate

activity (e.g., & design review is a design activity, a code

walkthrough is a coding activity, etc.). Thls allows us to

look at both phase and activity utl]]zation.

26TH ANNUAL TECHNICAL _¥MPOSlUM

WASHINGTON O.C. CHAPTER OF ACM

Gaithersburg, MD*June 11, 1987 8
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pRoJECT $|ZE AND STAFF-_* :_TH EFFORT
PR-PR-6_CT SIZE (LI_ES TOTAl, _.FORT STAFF-

1
Z
$

5
6
7
|
9

1o
11
12
13

AvenM[e

FDAS

OF CODE| HOUR*

15,500 17,715
50,911 12,5_
6i,17B 17,039
28,844 10,946
25,731 1,514
6T,3._5 19,475
66,260 17,097

+ ÷
5S,05T 15,2t_2
75,420 5,792
89,513 15,122
75,393 14,506
85,3($9 14,309

57,890 13j52'2

33,967. 141150

+ - Raw data not ivailable in dss_ blum
* - All _cbnical effort including progrlmmer Lnd mtnalement

Tale 1. Project Size imd Stall-month F__ort

MONTHS

116.5
82.g

112.1
72.0
I0.0

128.4
118.4

÷
100.4
381
99.5
95.4
94.1

89.0
93. !

time

The results of thls can be briefly summaclzed by

Table 2. According to this, in NASA, 22% of a project's

effort is during the design phase, while 40% is during

coding. Integration testing takes 16%_ _ other

activities take 12%. (Remember that requirements data

are not belng collected here. We are simply reporting the

percentage of design, coding, and testing activities. A

significant requirements activity does occur.)

1 Desil_n Code Int. Test. Other

By phase 22 40 16 12

By activity 25 30 15 29

Table 2. Activit]es performed in each phase (by o_)

However, actual activlties dlffer somewhat from sim-

ply ]ooklng at effort spent between somewhat arbitrary

calendar dates set up months in advance. By looking at

all design effort across all phases of the projects, design

actlvlty is actually 25% of the total effort rather than the

22% Hsted above. Coding is a more reasonable 30%

which means that the coding phase includes many other

activities. "Other" increased from 12% to 20%, and

include many time-eonsumlng tasks that are not

accounted for by the usual life cycle. (Here, Other
includes acceptance testing, u well as activities that take

a slgniflcant effort but are usually not separately
identifiable using the standard model. These activities

Include meetings, training, travel, documentation, and"

other various activities assigned to the project.)

The situationis actually more complex than shown

in Table 2. Although using Ph_ Date shows that total

design effort differs by only 3% from the design phase

effort, the distrlbutlon of design activity throughout the
project ls not reflected in the table. These data are

presented in Table 3.

IDeslgn [ Code Int. Test ] Accept. Test ]

so I _J 2o I 21

Table 3. Design Activity During Life Cycle Phases (by %)

As Table 3 shows, only 50°7o of "1i design work

occurs during the Design Phase and just under one third

of the total design activity occurs during the coding

period. Over one fifth (20%+2_) of all design occurs

during testing when the system is "supposed-" to be
finished.

As to coding effort,Table 4 shows that while ,

major part, or 70_ of the coding effort,does occur dur-

ing the Codln_ Phase, almost one quarter (i6_}'o+70:o)

occurs during the testlng periods..Ks _xpectbd, only a

small amount "of coding (7%) occurs during the design

phase; however, It does indicate that some codlng does

begin on parts of the system while other parts are still

under design.

Desil_n7 I Code70 Int" Test ] Accept" TestI16 7

Table 4. Coding Activity during Life Cycle Phases (by %)

Similarly,Table 5 shows that significantintegration

testlng actlv|tles(about 34_) occur h_ore the _ntegra-

tlon testingperiod. Once modules have been unit tested,

programmers begin to piece them together to build larger

subsystems.

[Design [ Code I l'nt.;rest ] Accept. Test ]

I 0 t s4 I 63 I 3 I
Table5. ]ntegrat|on Act_v|tyduring LifeCyft, Phues

3. PrototypinE

As can be seen, programmers readily flow from one
activity of a project to anOther-omore _ke a series of

rapids and not as a discrete set of waterfalls. Any model

that does not reflectthls cannot hope to accurately por-

tray software development. Boehm has proposed a spiral

model [BOE 86] of software development which takes
some of this into account. In addltlon, the concept of

prototyplng has been proposed as an alternative concept.

The remainder of this paper will address the prototyping

issue.

The current model of software development is

becoming even more complex. As new techniques are

developed, how do they fitinto the llfecycle? For exam-

ple, pseudocode is often written to describe a design.

This pseudocode is often iterated in greater detai! to

evolve into the source program. However, when does

pseudocode stop being deslgn and when does itbecome a

source program? Prototyping is another technique which

doesn't fit into this model well. in a prototype, the

W

w
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V

m

i
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developer builds some operational aspect of the system

and then evaluates the prototype with respect to some
criteria. _/here does thLq coding and testing fit? What

activity is this in the overall life cycle?

At NASA, a prototype was developed to investigate

implementation strategies for a new product. In this see-
tion, the role of the prototype will be described and the

resulting data collected from building the prototype will

be compared with the historical life cycle data presented
In the preceding section.

A prototype Flight Dynamics Analysls System

(FDAS) was implemented by NASA/GSFC. Data were

collectedduring the development of the system. For typ-

icalflightdynamics software, which NASA has consider-

able experience in building, prototyping would be of lim-

ited benefitdue to significantknowledge of how previous

systems were built. However, in this case, FDAS was to

be a source code maintenance system to manage other

source code libraries.It would enable NASA analysts to

test new spacecraft orbit models by providing a human-

engineered common interface which could be used to

invoke other fllght dynamlcs pankages. Since it was

unlike previous NASA projects,and since NASA person-

nel had limited knowledge of exactly how to build this

system, FDAS was a good candidate for prototyping.

The goal of the prototype Was to understand the

problem domain better. As such, an early decision was

made to build the system with every expectation of

throwing it away. If part of the source program could be

transferred to the final system, then that would be

viewed as an unexpected bonus. After the prototype was

built,it would be evaluated and from this experience the

requirements for a production version of FDAS would be

developed. Therefore, the basic Idea of the prototype

was to learn, and it fitsinto the lifecycle as part of the

requirements phase of Figure 2.

Thls definition of prototyp]ng differsfrom others

that view a prototype as a firstreleaseof a system. The

goal was clearly to be able to understand the problem

mad not to generate useable source programs. In another

study [BOE 84], prototyping was viewed as an |teratlve

process converging on the finalproduct.

We viewed the prototype as part of the requirements

analysis of the problem. However, since the prototype

was to execute, it itself had a full development life cycle.

As Table I previously showed, since FDAS was almost

34,000 lines of code and took about 93 staff months to

complete, it was a rather large project by itself.

FDAS was to be an interactive system. That meant
that the user interfacewas crucial.Because of this,itwas

determined that the prototype should emphasize that

aspect of system design.

The prototype was built in FORTRAN for a DEC

VAX II/780. In hindsight it is not clear that such an

Implementation was the wisest. However, at the start,

the problem did not seem that complex, and personnel

experience and available hardware and softwMe lent

Requirements

(Prototype System)

Requirements

Design

Code & Test

System Test

Acceptance Test

DESIGN

CODE & TEST

SYSTEM TEST

ACCEPTANCE TEST

Figure 2. Prototype as part of Software Life Cycle

themselves to a FORTRAN implementation. Since the

goal was to give the user a taste or what services the

system would provide, a screen simulation applications

package (e.g., Rapld/Use IWAS 86]), a very high level

simulation, or a 4th generation language might have been

adequate.

The use of FORTRAN, however, did have some

benefits. For one, it gave the developers experience In

using FORTRAN in a type of text-processingapplication

for which they had llttieprevious experience. One of the

reasons that the NASA group generally has high produc-

tivityis that they have had considerable experience in its
application area. By building the prototype in FOR-

TRAN, they were using Brooks' second system property

where he advises "plan to throw one away" [BRO 75].By

building a first prototype in FORTRAN, mistakes would
undoubtedly be made. By planning on discarding the

prototype rather than patching it to correct errors, the

ultimate FDAS system should be more reliable and better

structured - even if it dld not turn out to be cheaper.

This by itselfis a valuable property, although it is not

clear that itisa measurable one on most projects.

2_TH ANNUAL TECHNICAL SYMPOSIUM
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A more important aspect of a FORTRAN ample-

mentatiou (at le_t with respect to thls paper) is that the

FDAS prototype was a "typical" FORTRAN project.
Hence its llfe cycle characteristics and the data that were

collected could be compared with many other projects in

the NASA database. This would not have been potable if

some other mechanism (e.g.,simulation package of some

sort) were used.

In the next section, the prototype will be evaluated.

However, here *re some of our general conclusions. The

handling of requirements differedfrom a production sys-

tem; FDAS requirements were incomplete when design

began. Unlike previous projects, they were not stated

precisely because aspects of the system were still an open

subject during development IZEL 84]; even identifying

the potential user community and its impact on the user
Interfaceand itseffecton "assumed computer experience"

was stillbeing considered. Dates for completion of each

phase were more flexlble than in the historical data and
milestones were less rigid than in a production develop-

ment. During other phases, requirements were generally
modifi•ble which in turn affected g]] activities in each

phase.

More time was spent in design, than is usual for a

typicalproject. Unlike other NASA projects, an exten-

_ve r_view process took place almost weekly as design

decisionswere made and altered. The coding and testing

effortsbad no formal review. AJthougb status meetings

were held almost weekly, the developers placed less

emphasis on testingthan w_th a production system; and

sincethe prototype had • very llmlted lifetime,features

thai seemed well understood but cumbersome to imple-

ment were deleted from the requirements. According to

the finalreport, coding took less time than in previous

projectsbut testing did consume the same amount of

effort.Very littleeffortwas spent on acceptance testing,

sincethe effectiveHfe of the prototype was short.

4. Evaluation of Prototype

In • manner similar to the 13 other NASA projects,

the FDAS project was analyzed by phases and activities
usingdata in the SEL database.

4.1. Phase Analysis

Data ¢ollectlon based on phases is shown in Table 6.

The effort expended for design, coding, and testing were

romparahle, hut notice that acceptance testing was only

1.3c'_or the prototype effort,but 12.7% in the historical

d_:a.%%3th • limited lifetime,reliabilitywas a ]imlted

b,ture. As long as the system worked for evaluation, it

• _ tdeq,•te. In addition,integration testlngtook 10%

m_re effort(26/_ compared to 16%) in the prototype.

P*e believe this was mostly due to "schedule slippage" as
the complexity of the prototype caused activities to be
ek[syeduntil the end.

DEVELOPMENT EFFORT BY PHASE DATE
(13 Project_ v, Prototype FDA.S)

PROJECT DESIGN CODE INTEG. ACCTST

2 t6.2 48.4 123 162
3 21.8 479 17.4 129
4 35.9 39.5 24_5 O.l

5 18.2 68.11 13,0 00
6 IS.3 48.8 109 24.3
7 19.0 5,0.4 14.9 157
8 22.9 48.4 13.0 15.B
9 _,6 68.3 8.1 II
I0 _4.4 44+§ _0.2 108
ll 22.7 39.4 21.4 "165

12 16.9 53.t 109 lg,l
13 28,2 43.5 20.1 8.2

Average _.0 49.'. 16.2 12.7

FDAS 270 45.3 _.4 1.3=..

Tzble e. $ottwzre Dev¶[0pment Effort by ,_htte

4.2. Activity An&lyais

In the previous subsection, we viewed effort by

phase date. Table 7 displays the actual activities of

deslgn, coding and integration test effortindependent of

phase. In this case the resultsdiffer.Usually during the

design phase, coding and testingactivitiesbegins On some

modules, and in the code and unit test ph_e, additional

design activity continues. Integration testing begins as

soon as coding and unit testing of a component com-

pletes. Similarly, during the testing phase, any errors

that were uncovered might require substantial redesign

and recodlng. Comparing with Table 8, we dlscover that

most NASA developments have additional design effort

later[n the lifecycle to raisetots(design effortfrom 22_

to 25.6_. In the FDAS case, total design dropped from

27% to 25_, meaning that actlvhles-_t_-er d_an design

occurred in the design phase. In both cases, activities

other than coding occur during the coding phase since

actual codin¢; activity was only 30.5_ and 17.6%

respectively,as opposed to the 45+% of effortof the cod-

Ing phase (Table 6).

Comparing FDAS with the 13 other developments,
design effortIscomparable at 25_o, but the code and unit

test effort and the integration test effort were different.

Due to the wide variability of the "other" category of

Table 7, Table 8 presents the same data as relative per-

cent for Design, Code, and Integration testing only. This

shows the differences more clearly.

No formal review was performed on the prototype

durlnz coding and unit testing. Because of the decision

to delete hard-to-build but understood features that dld
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DE'VELOPMEHT EFFORT B'Y AC'rP_'rY' IN ALL PHASES
(I:_ Proltcu vs pr0tor._,P,FDA$).

PROJECT
NUM

1
2
3
4
6
4
7
6
g
I0
11
12
13

A.rqe

DESIGN CODE

17.4 064
301 394

2? 3 _7
310 35 $
149 21 6

110 139

613 435

X9 3"/3
293 3t 0
¢37 46S
32.9 363

2s_ 3os,
25 o tT 6

IN'lEG OTHER
ACT (To) ACT (,_1

04 .M3
201 ¢T

• |93 342
60 380
¢4 24 I

2410 34j_rz

143 396

93 _6

169 64

61 t64

IT2 225

240 sg

166 156

t6 0 28g
'J6I 323

T_t,k 7 Sdtw_e De.lopm4mt ,_'oh by Activity

not effect the FDAS evaluntlon, coding wu quite

straightforward. Most o/' the easy coding was completed

in a rather short time, and the more dlmcuJt coding

aspects were simply not implemented. As Table 8 indi-

cates, at 26% coding, FDAS had the lowest relativecod-

]ng effortof any of the 14 measured projects. The next

lowest wu 30.8c_'0and the average over all 13 was 42.2%.

In addltion, while in mc_t projects the design and

integration testing efforts were le_ than the codlng

activity,in FDAS both were almost 50_0 greater than for

coding (about 37_ for each compared to 26_ for cod-

INK).

PER CENT EFFORT IN EACH PHASE
(13 ProiecU vs Prototype FleAS1

PROJECT DESIG-N CODE&UNiT [NTEG.
NUM ACT(%) ACT(%_ AC't(%I

l 30.9 37.5 22.0
2 33.3 43.T 23.0
3 39.9 30.9 29.3
4 44.0 46.3 0@.7
5 40.8 48.9 12.3
0 24.6 35,9 30.S
7 33.5 42.9 23.9
$ 32.2 40.7 27.1
I0 4e.8 4s.7 07.S
It _.8 40.1 22.1
12 25.2 49.4 25.5
15 38,{$ 43.0 18.4

AverMe 36.2 42.2 21.0
FDAS 389 . .280 37.1

Table 8. Relative Activity

This apparent short circuiting of coding, however,

appeared to have a detrimental effect on testing, which
took s relative 37.1O0 of effort u opposed to 21.6°:o on

other projects. Only one other project (6) took as much

effort(39_) and from Table I project 6 was the most

costly,where you might expect an excessive need for test-

ing.

Based on the original productivity rate of 1.4 source

lines of code (SLOC) per hour on most NASA pro_ects

[BAS 81 I, FDAS with s size of 33,967 SLOC had a

productivity rate of 2.4 SLOC per hour. (Note: the aver-

age project size of 57,890 SLOC of Table I cannot simply
be divided by the average effort,of 13,552 hours since

most NASA projects reuse some code from previous

terns. Table I is total system size, and the productivity

rLte is for new linesof code.)

4.2.1. Design Effort

A true picture of devdopmeut can be achieved by

investigating actual activity during each phase.
Although design Is supposed to occur prindpally during

the design phase, for both the 13 older projects and the

FDAS prototype s comparable one half of the total

design effortoccurred during the design phase, and equal

amounts wen distributed through the rest of the llfe

cycle (Table 9). This repeats Table 3 in more detail.

Only 2% of the design of FDAS occurred during the

acceptance test phue in the prototype, prineipally

because the FDAS acceptance testing phase was so short

and the few errors that were found did not get

redesigned and corrected. For the historicaldata, the

6.4O0 of design occurrlng during acceptance testing

represents errors found in testing that required source

code to be redesigned.

DESIGN ACTrVITY EFFORT IN EACH PHASE
(13 Proiecta vs Procotwe FDAS)

PROJECT

!
2
3
4
S

9
0

10
!|
12
13

Averl#l

FDAS

DESIGN CODE

PHASE(%) P_E{%)

41J$ 33.9
53.8 31._
33.3 37.1
45.3 32.6
17.4 "(S9.1
_8.9 30.7
83.0 15.3
28A 50.9
81.8 38,2
$7.8 27.2
58.7 13.7
58.9 32.8
60.S 24.7

49.2 34.1
49.8 2_ 9

IY;'rEG.
TEST(%)

10.0
9.2

19.7
_.0
13,3
4.3
9.8
7A
0.0
7.0

19.87
5.9

11.9

10.3,
19.B

ACC.TST.

14.3
9,0
9.0
0,1
0.0

14.1
8.0
0.0
9.0

10.0
2,4
2.0

8;4
1.7

Table O. Desilp_Activity E/fort

4.2.2. Code & Unit Test Effort

The code & unit test activities in the prototype,
however, represent a departure from the older projects
(Tah(e I09. In most developments, about 7o0 of the cod-

ing is completed during design (although it varied from

0°:o to 22°:0 in the 13 other projects). Implementation

often begins as some components become completely

specified.However, with FDAS, due to itsgreater uncero
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talnty, no coding occurred until the development team

really understood the deslg•, i.e., until the coding phase

began. For most projects, 70% of the total code and

unlt test effort ]s [n the coding phase, but In the proto-

type almost 96% of the effort was during coding. Coding

often extends through acceptance testing, but with

FDA$'s relatively light acceptance test, few critics] errors

were found $o [|ttle effort was spent ]n trending during

test. Coding and testing need to be carried out on the

full system for every change or modification of the

design, hut |n the prototype it was not necessary to code

the new design.

CODE & TEST ACTIVITY EFFORT IN EACH PHASE

(]3 Proieets vs Fmtotyve F!D/_S} I_

PROJECT

1
2
2

4
5

6

7

$

2

10
it

12
12

Aversfe

FDAS

DESIGN CODE

PZ.t,.sr_%) Pz..Z,-_EI°_)

1,4 78.$ "

n.O 72.8
22.2 58.2

15.4 $8.8

21 P. 68.7

0.$ 77.5
1-$ 73.0

14.7 54.7

3.2 91.1

0.0 75.0
9.9 70r 5

0.3 74.8
4.S 8&8

s.9 7.0.3
0.0 959

_G. ACC.TST.

TEST(%} j P_S_%}

11.$ 9,1
18.T T.S

11.8 9.8
_IS.I 0.I

10.1 0,0

t|.Z t0.]
t5.8 g.2
21.0 0.7

5.1 0,6

22.5 4.$
20,1 7.2

8.3 1O.O
_.9 4.9

15.9 6_9

4_1 0,0

T_le 10. Oode& Unit Tat Activity F.Jort

4.2.3. Integration Tat Effort

Integration test effort k distributed through all

phases 1• the collected projects with more effort (43%)

durlng the code _ unit phase tl3a• 1• either the i•tegrs-

tion ph_e (26%) or the acceptance test phase (26%)

(Table 11). In genera], almost 50% of all |ntegration test-

ing occurs during design and coding phases. In FDAS,

this effort wu delayed with about two-thlrds of all

integration activities in the integration phase. This wu

due to delaying the i•teKratlo• until more pieces or the

system were completed.

4.2.4. Other Activity Effort

The Other category couslsts of activit|es such u

travel, compJetlon of the data collection forms, meetJnp,

or training. While these activities are often Ignored i•

most life cycle studies, the costs are significant. Typi-

cally, about 29%-of act]vitles are in thls category and of

the 13 met, ured projects, "other" consumed m_re-:than

one-third of the effort o• 6 of them (Table 7). FDAS

used a comparable 32% "other'. As see• l• Table 12,

the prototype devoted more effort to the design phase,

mainly for meeting, traveling, and tra]n|ng due to the

extensive unknown quality of the design at the beginning

5207

INTECRATION ACTIVITY EFFORT IN EACH PHASE

PRO JECT

NUM

1
S

5
4

$
6

7
$

1'o
11

12

12

Aversle

FD,_

DESIGN CODEk_IT INTEG.

PHASE(_) PI-L_) TES.TC% }

0.0 17.8 17.4

0.0 45.2 _0.1

$.1 53.2 21.1

21.0 30.3 393
H.4 71.0 0.O

I.O 40.9 IT,6
0.5 54.1 _.3

2,9 33.8 19.2

0.0 00.4 29.2
0D 23.1 41.$
0.O 3A 4 35.I

0.1 32.7 2'2.4

1,5 49.6 '/S.8

4.T 434 _ 1

0.0 34.5 e2.7-

Table II. _telrmtia8 T_ Activity F__ort

ACC,TST.

PHASE{%}

54.7

24.T
18.9

0.0
0.0

40.5
19.2

44A
4.4

35.5
=8.$

44.8
20.2

25.8

2.8

of the task. The acceptance test activity is low for the

slm[lar t'eason _ th_at _e p_rototype system had few users of

short duration Lndthereforc no detailed tests. On the 13

collected projects, the Other activities are distributed

more uniformly during all phases, including the accep-

tance test where there is • need to test before _ctua]ly

turning the system to the user.

OTHER AOTrVITIES EFFORT IN EACH PHASE

PROJECT

1

2

3

4
$

S

7
8

g
10

11
12
IS

(13 Pr_iccts

DESIGN

2&3
0,0

_!.7
45.2
U.O

18.2
14.4
2_.5

I3.g
12.4

21_4

4T .5
42.5

Average 23,1

FDAS 451

vs Prototvve F'DAS)

G'ODE_TST E_TEG.

PRAS._%) T_ST(%)

32.2 18.1

0,1 26.4
47.8 Id.8

30.2 23.8
S7.7 21._

44.2 g.0

51,6 14.5
47,7 11.4
_,_,5 tS.T

_.2 35.9
32. ') I8.g
46.8 4.6

30.0 12.7

41.2 17.8

38.S 153

r'

AC_,TST,

PHASE(_)

_e.5

_4.6

133

00

0.0

283
19,5
14.4

0.0

21.5

27.8
1.$

14.2

17.9

0,3

Table 12, Other Activitie_ Egort

&. Conclualoml i: : :- - :- -

In this paper we have collected data on many

software projects developed at NASA/GSFC and com-

pared them with a new prototype development. By using

data from the SEL dstahue, it appears clear that the

software development process does not follow the water-

fall life cycle. It also appears that the prototype develop-

13

2_TH ANNU&t. TECHNtC&_. SYMPO_dUM
WASHIN_ITON D.C. CHaPTEn OF ACM

Gaithersbur_, MO.June 11, 1_7

2-8

W

me

w

W_

n

W

'qm

i

W



ment follows a similar life cycle pacte'rn as ot_er software

projects. Although a single data point (the prototype)
does not give definitive answers, it does give some trends

that are of interest.

Both approaches have similar software life cycles,

but the effort distributed over each ph_ differs. The

coding |n the prototype was more ad hoe, therefore test-

Ing became more involved. Integration testing was
harder in the prototype because of the false assumption

that reliability was not a central issue. The production

developments devote more effort in coding than in testing

(Table 7).

While not inexpensive, the prototype appears to he

successful. Several design decisions turned out to be

partially faulty when the prototype was tested. The
humma computer interface has been redesigned.

In fact, after completion of the prototype, several

screen simulation systems were used to model a user
interface, mad a more hierarchical menu model was

developed. Without the FDAS experience, NASA might

have implemented a system where users had no real

experience until the large Implementation would be too

far along to change adequately.

The underlying execution model of FDAS became

better understood. As a source code control system, the

separation of the FDAS code and the user's flight dynam-

ics application code became clearer. Most user programs

would be FORTRAN (at least initially); however, other

languages (e.g., Pascal, Ada) would be used in the future,

while it would not matter to the user In what language
FDAS wu itself written.

FDAS included a prototype preprocessor to add

abstract data types to FORTRAN. Thls preprocessor

was initially tied directly to the FDAS implementation.

It is now somewhat |ndependent to allow for other
preprocessors later. The FORTRAN preprocessor, call

OPAL, for Object Programmlng Applications Language

[CSC 86], is a more rffit_onal extension of FORTRAN

with data structures useful for flightdyaamlcs applies-

along, such as vectors, matrices, and quaternlons. The

decision was also made to move away from FORTRAN,

and the system itself is being implemented in Ada_

although it will initially protein FORTRAN application
code.

A new production FDAS implementation would

avoid many potential pitfallsdiscovered via the proto-

type. (_urrcntlythe production version of FDAS is under

development, and its design has benelqted greatly from

the earlierdevelopment. We willhave to wait for com-

pletion before fully evaluating this process. It is quite

clear,however, that FDAS willbe a much better product

that ifthe prototype had not been built.

Prototyping probably increues the cost of the sys-

tem, but it greatly increases its quality. It gives a flavor

to the end user of what the system can do and how it

can perform the task, especiallyin a nonfamiliar environ-

meat. It provides the developers a "second system* effect

for perfecting a design.
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Measuring Software Design Complexity

D. N. Card and W. W. Agresti
Computer Sciences Corporation, Silver Spring, Maryland

v

=_.__=

Architectural design complexity derives from two
sources: structural (or interrnodule) complexity and local
(or intramodule) complexity. These complexity attributes
can be defined in terms of functions of the number of I/O

variables and fanout of the modules comprising the
design. A complexity indicator based on these mea-
sures showed good agreement with a subjective assess-
ment of design quality but even better agreement with
an objective measure of software error rate. Although
based on a study of only eight medium-scale scientific

projects, the data strongly support the value of the
proposed complexity measure in this context. Further-
more, graphic representations of the software designs
demonstrate structural differences corresponding to the
results of the numerical complexity analysis. The pro-
posed complexity indicator seems likely to be a useful
tool for evaluating design quality before committing the
design to code.

1. INTRODUCTION

Typically, design is the earliest stage of software

development at which the pending software system is

fully specified and in which the system structure is

clearly defined. Design usually proceeds in two steps--
architectural, then detailed design. This study only

considers the former. Throughout the following discus-

sion, "design" will refer to architectural design unless

otherwise indicated. Assessment of the quality of a
software design rates high in the priorities of software

developers and managers. However, the multitude of

potentially conflicting design objectives, methods, and

representations, as well as a lack of appropriate data,

have hindered the development of effective measures of
software design quality.

One quality attribute, complexity, has been studied

extensively. Early investigations [I, 2] focused on the

internal organization of individual programs or subpro-
grams rather than on the structure of software systems

Address correspondence to David ._1.Card. Computer S¢ienc_
Corporation, 8728 Colesville Road, Silver Spring, MD 20910.

"The ,[o_mal of Systems =r_l Software S, 185-197 (1988)

© 1988 E|scviet Science P_blishin$ Co., Inc.

composed of large numbers of subprograms (or mod-

ules). More recently, complexity studies have attempted

to consider software systems [3, 4]. Many of these

approaches require extensive analysis (usually special
tools) to compute values of the complexity measures

proposed. Moreover, few of these measures can be

computed at design time. The objective of this study was

to define some "simple" complexity measures that

could easily be derived during early design.

The initial investigation considered many existing

models of software complexity but did not find any of
them suitable for this application because 1) necessary

data were difficult to extract or compute, 2) required

information was not available during architectural de-

sign, and/or 3) our data data did not support the model.

For example, all of these reservations apply to software

science ill; see Card and Agresti [28].

This paper explains a new approach to measuring

software design complexity that considers the structure

of the overall system as well as the complexity incorpo-

rated in individual components. The measures derive

from a simple model of the software design process.

Analysis of data from eight medium-scale scientific

software projects showed that the complexity measures
defined in this report provide a good estimate of the

overall development error rate, as well as agreeing with
a subjective assessment of design quality. Furthermore,

differences in design complexity indicated by the com-

plexity measures also demonstrated themselves in design

profile graphs.
This analysis relied on data collected by the Software

Engineering Laboratory (SEL) from eight spacecraft

flight dynamics projects. The SEL is a research program

sponsored by the National Aeronautics and SFace

Administration [5]. It is supported by Computer Sci-

ences Corporation and the University of Maryland. The

objectives of the SEL are to measure the process of

software development in the flight dynamics environ-

ment at Goddard Space Flight Center, identify technol-

ogy improvements, and transfer this technology to flight

dynamics software practitioners.
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2. NATURE OF DESIGN COMPLEXITY

Architectural design is the process of partitioning the

required functionality and data of a software system into

parts that work together to achieve the full mission of the
system. Thus, architectgral design complexity can be
viewed as having two components: 1) the complexity

contained within each part (or module) defined by the

design, and 2) the complexity of the relationships among

the parts (modules). In the following discussion, we will
refer to design parts as modules, in the sense that a

module is the smallest independendy compliable unit of

code [6]. Each design part will eventually be imple-
mented as a software module. In the FORTRAN en-

vironment of the SEL, modules correspond to subrou-
tines.

Many different approaches or methods achieve the

same design result: a high-level architectural design and

an integrated set of individual module designs. The

detailed design (e.g., PDL) developed to implement the
work assigned to a module provides another source of

complexity that is not analyzed here. It is not the intent

of this paper to address whether specific design methods

result in lower-complexity (or better) design products.

Rather, its objective is to demonstrate a complexity
measurement approach that can be applied to a wide

range of such products, regardless of how they were

produced. The authors recognize that correct design

practice is essentia! to achieving good designs. Gener-
ally, this report shows that the conditions that result in

lower values of the complexity measures are consistent

with accepted design practices.-

Of course, any Complete design must include nonmo-
dules such as files and COMMON blocks (in FOR-

TRAN). Furthermore, partitioning is not the only design

process. This proposed model only attempts to capture a

subset of all the possible factors in complexity. As

Curtis [7] points out, complexity depends on the

perspective from which an object or system is viewed.
This paper examines software complexity with respect to

the difficulty of producing the designed system (for

example, the difficulty of changing the implemented

system is not considered). The following discussion is
intended to illustrate the line of reasoning followed in

developing the model and measures. It should not be
construed as a mathematical proof that this model is a

necessary and sufficient explanation of complexity.

2.1 A Design Model

One common approach to design is functional decompo-

sition (the basis of structured design [6]). It results in a

hierarchical network of units (or modules), For any

module, workload consists of input and output items

5207
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WORKLOAD
(INPUT_OU'rPUTDATA)

PROCESS

WORKPERFORMEu ,
(LOCAl,.COMPLEXITY) ,._¢¢'_.. ,.

I _Jllll( r.r_A.,_:uum,_L"

CONNECTIONSTOWORKDEFERRED
(STRUCTURALCOMPt.EXn%3

Figure. L Decomposition model of software design.

(data couples) to be processed. At each level of

decomposition, the designer must decide whether to

implement the indicated functionality (perform the

work) in the current module or defer some of it to a

lower level by invoking one or more other modules (via

control couples). Deferring functionality decreases the

local (intramoclule) complexity but increases the struc-

tural (intermodule) complexity (see Fig. 1). Similar

decisions also must be made when following other

design approachcs(e.g:.object oriented [8]), ....
The internal design of a module (how the work is

performed) may contribute procedural complexity, but
that is outside the scope of this paper. Of course, many

early studies of software complexity ('e.g., [2]) focused

on process construction. The distinction made here

between local and procedural complexity parallels the

distinction between the specification and the body of an

Ada* package.

Thus, architectural complexity is a function of the

work performed (within modules) as well as the connec-

tions among the work parts (modules). Effective design

minimizes work as well as connections. This argument

leads to the following formulation for the total complex'-

ity of a software design:

C- =S- +L- (1)

where

C- -- total design complexity

S- -- structural (intermoclule) complexity

L- = local (intramodule) complexity

* Ada is a registeredtrademark of the U.S. Government (Ada Joint
Program Office).
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Measuring Software Design Complexity

That is, the total complexity of a design of given

complexity C- can be defined as the sum of intermo-

dule plus intramodule complexity. In this simple model,

all complexity resides in one or the other of these two

components; hence, they are additive. These complexity

components correspond to the structured design con-

cepts of module strength,:.(or cohesion) and coupling

defined by Stephens et al. [6].

2.2 Relative Complexity

Because projects iand designs) vary greatly in terms of

magnitude, a measure of relative complexity ultimately

may prove more useful than total complexity. Dividing

by the number of modules defined in the design
normalizes these complexity measures for size so that

designs of different magnitudes may be compared:

C=S+ L (2)

where

C = C-/n (relative design complexity)

S =S-/n

L =L-/n

n = number of modules in system

Although individual modules may vary greatly in size in

terms of lines of source code, the module, as it is used

here, is the unit of design. Hence it is the appropriate

normalization factor. The rest of this discussion will

concern relative complexity.

3. DEFINITION OF COMPLEXITY MEASURES

The next sections define measures for each of the two

components of relative complexity just identified in

Equation 2. The measures incorporate counts in the

design characteristics (calls, variables, and modules)

identified in the model. (Table 1 summarizes some

design measures from the modules studied in this

analysis). The following sections also discuss methods

and consequences of minimizing complexity as defined

by this model.

Table !. Design Measures Summary

Minimum Mean Maximum

Module size I 66 603

Fanin I 1.3 16

Fanoot 0 2, 8 27

I/O variables I 24 237

Level 2 6. I 11

Note: _tsed on 1.142 newly developed module_t.

187

3.1 Structural Complexity

Structural complexity derives from the relationships

among the modules of a system. The most basic

relationship is that a module may call or be called by

another module. The structurally simplest system con-

sists of a single module. For more complex systems,

structural complexity is the sum of the contributions of

the component modules to structural complexity. These

potential contributions are occurrences of fanin and

fanout as noted by Henry and Kafura [9], as well as by

Belady and Evangelisti [3]. (Fanin is the count of calls to

a given module. Fanout is the count of calls from a given
module.)

In the SEL data analyzed (see Table I), multiple fanin

generally confined itself to modules that were simple

mathematical functions reused throughout the system.

Consequently, fanin did not prove to be an important

complexity discriminator. On the other hand, fanout

proved to be highly sensitive, as indicated in a previous

study [101. Counting fanout only also ensures that each

connection is counted exactly once. Note that lower

fanout indicates less coupling in the sense that there are

fewer couples (without regard to their strength [1 1] or

type [61).

According to this model, a module with a fanout of

zero contributes nothing to structural complexity. How-

ever, the distribution of fanout within a system also

affects complexity. The interconnection matrix repre-

sentation of partitioning used by Belady and Evangelisti

[3] suggests that complexity increases as the square of

connections (fanout). All descendents of a given module

are connected to each other by their common parent.

Then, for a fixed total fanout, a system in which

invocations are concentrated in a few modules is more

complex than one in which invocations are more evenly

distributed. These considerations lead to the following

formulation for structural complexity:

z_
S = -- (3)

/7

where

S = structural (intermodule) complexity

j_ = fanout of module "i"

n = number of modules in system

This quantity is the average squared deviation of actual

fanout from the simplest structure (zero fanout). Henry
and Kafura's term "(fanin * fanout) ** 2" [9] reduces to

fanout-squared when fanin is assumed equal to one (the

nominal case). Similarly Belady and Evangelisti's mea-

sure of complexity [3] is a function of the number of

nodes (modules) and edges (fanout) in a system or

cluster (partition).

5207
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The fanout count defined here does not include calls to

system or standard utility routines, but does include calls

to modules reused from other application programs. A

reused module must be examined by the designer to

determine its appropriateness--as opposed to standard

utilities that are well understood by deve!opers.
b

3.2 Local Complexity

The internal complexity of a module is a function of
the amount of work it must perform. The workload

consists of data items that are input to or output from
higher or parallel modules. This definition is consistent

with Halstead's concept [1] of the minimal representa-

tion of a program as a function (single operator) with an

associated sct of I/O variables (operands). This work-

load measure parallels the idea of actual data bindings as
used by Hutchens and Basili [11].

Then, to the extent that functionality (-work) is

deferred to lower levels, the internal complexity of a

module is reduced. Averaging the internal complexities

of a systems's component modules produces its local

complexity. Most guidelines for decomposition-sUggest
decomposing into units of equal functionality. Assum-

ing, for simplicity, that the workload of a module is

evenly divided among itself and subordinate modules

leads to the following formulation of Complexity:

U/

L = _ (4)
n

where

L = local (intramodule) complexity

u, = I/O variables in module "i"

.t_ = fanout of module "i"

n = number of new modules in system

The "+ l" term represents the subject module's share

of the workload (incidentally, it prevents the divide-by-

zero condition from arising when a module has no

fanout). I/O variables include distinct arguments in the
calling sequence (an array counts as one variable) as
well as referenced COMMON variables. An earlier

study [10] indicates that the presence ot" unrefei'enced

COMMON variables does not affect module quality.

Data item complexity is not considered here (only newly

developed modules enter into this computation).

Henry and Kafura [91 Used[ the count of source lines of

code to represent intramodule complexity. However, as

used in Henry and Kafura [9], no matter how large the

module, its complexity would be zero if it had no fanout.

Basili et al. [12] showed source lines of code (size) to be

highly correlated (r = 0.79) with the number of I/O

5207
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variables (operands). Another earlier study [I 3] shows

that high-strength modules [6] tend to be small. Conse-

quently, the local complexity measure may be an

indicator of average moGule strength (or cohesion [6]).

3.3 Minimizing Complexity

Design complexity, as defined in the preceding sections,

can be minimized by minimizing its structural and local
components. However, these components are not inde-

pendent. Both measures include fanout. Minimizing
structural complexity requires minimizing tl'.e fanout
from each module. For a given number of both modules

and total fanout, structural complexity is mimnized

when fanout is evenly distributed across all modules

(except terminal nodes, of course). On the other hand,

local complexity can be minimized by maximizing
fanout or minimizing variable repetition.

Repetition occurs whenever a data item appears in

more than One module as a calling sequence argument or

referenced common variable. Internal uses (including
CALLs to other modules) do not count as repetition. In

general, minimizing local complexity will produce

smaller modules (in terms of executable statements), but

is also may increase structural complexity disproportion-
ately. For a given module with a fixed number of I/O

variables_ th6-'_nbu_il_a/-cOni/-_butes minimum complex-
ity can be determined as follows:

e=f 2+ u/(f+ 1)

where

c = contribution of given module to total complexity
per Equations 2, 3, and 4

then

dc/df = 2f - ul(f + I) i

at minimum

0=2./'- u/(f+ 1) _

then

u = 2/(/+ I) z (5)

Figure 2 shows a plot of Equation 5 as a step function (to

reflect the discrete natures of u and f). It identifies the

fanout that minimizes complexity for possible counts of

I/O variables. For example, in the range from about 100

to 200 I/O variables, complexity is minimized with a

fanout of 3. Since very few modules include as many as

200 I/O variables, the plot indicates that the commonly

accepted range of values for fanout (up to 7 ± 2) is

much too large. Curtis [7] suggests that the popularity of

this bound derives from a misunderstanding of certain

psychological studies. This implication is consistent with
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an earlier study [10]. Furthermore, Constantine [6]

observes that most programs can be decomposed effec-

tively into a common structure of three parts: input,

process, and output. Larger fanouts may indicate too

rapid decomposition. This result suggests than a fanout
of one is a reasonable value for modules with few I/O

variables.

In addition to the selection of an appropriate fanout,
design complexity can also be minimized by reducing

variable repetition, i.e., by not including variables

where they are not needed. Rigorous application of the

principle of information hiding [14] should reduce
variable repetition and, hence, local complexity.

Figure 3 shows two design segments of equal struc-

tural complexity: The number and distribution of fanouts

are identical. Each data couple represents a repetition of
the variable "X". Figure 3a traces this variable through

a design following strict topdown decomposition rules.

"X" appears in the higher level modules (A, B, D)

as well as in the lower level modules (C, E). Figure 3b
shows an alternative design with a horizontal transfer of

data that bypasses the higher level modules (for the case

in which modules A, B, and D do not actually use "X").

The local complexity of the intermediate modules (B, D)

in the strict top-down configuration (Figure 3a) exceeds

Figure 2. Selecting fanout to minimize complexity.

189

their counterparts in the alternative design (Figure 3b)

because their counts of I/O variables are larger.

Parameter transfer between hierarchically adjacent

modules (e.g., from B to A) produces a lower complex-

ity than transfer via a global area when that is as far as

the data item goes. For a triplet connection (e.g., from B

to A to D), the two approaches have the same complex-

ity ("X" counts twice in each). This implication is

consistent with the results of an earlier study [10].

Because this model emphasizes the number of data

couples rather than the nature of the coupling mecha-

nism. it penalizes "tramp data" (data passed through but

not referenced by a module).

Rotenstreich and Howden [15] argue that both hori-

zontal and vertical data flow are essential to good

design. Appropriate use of horizontal transfers prevents

data flows from violating levels of abstraction. COM-

MON blocks provide the only mechanism for horizontal

data transfers in FORTRAN. Figure 3 shows that

horizontal flow's can reduce the magnitude of the local

complexity measure in some situations.

Of course, a less complex design might also be

5207
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produced by partitioning the work differently and
restructuring this des_gn._=l:rorexample, PROC C could

be invoked directly by PROC E (if the nature of the

problem permitted)_ This simple r structure would als o
be reflected in lower values of the complexity measures
defined by this model. (PROCs B and C would each
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4. EVALUATION OF COMPLEXITY MEASURES :

The value of the complexity measures defined in the

preceding sections was evaluated in two ways. First the
complexity scores for the eight projects were compared
with a subjective rating Ot'-desq_n-qiaa_hy us_n-g a I
nonparametric statistical technique. Then the complexity
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scores were compared with objective measures of

developmen t productivity ?rod error rate. This section

presents the results of the two evaluation approaches.

Productivity and error rates were computed using the

developed lines of code (DLOC) measure as defined by Project

Basili and Freburger [16]. A
Data for this analysis were extracted from the source n

code of eight projects by a specially developed analysis c

tool. However, software developers can easily extract at D
E

design time the counts of modules, fanout, and I/O F

variables necessary to compute these complexity mea- G

sures. The eight projects studied were ground-based 8

flight dynamics systems for spacecraft in near-earth

orbit. Table 2 summarizes some general characteristics

of these software systems. The most recent project

studied was completed in 1981.

All of these systems were designed and implemented

to run under the Graphics Executive Support System

(GESS), an interactive graphics interface [17]. Conse-

quently, GESS occupies Level 1 of each design hierar-

chy. GESS manages most external data interfaces for

these systems. It is not included in the complexity
calculations.

4.1 Subjective Quality

The eight projects were subjectively ranked in order

from best to worst, in terms of design quality, by a

senior manager who participated in the development of
all eight projects. Then, the four best-rated designs were

classified as "good' while the other four were classified

as "poor." Table 3 shows the results of that procedure.

The table also includes the computed complexity mea-

sures. Note that the four designs subjectively rated as

"good" also demonstrated the lowest relative complex-

ity. The expert was not provided with specific criteria

for "quality," but later reported that perceived "com-

plexity" played a major role in assigning scores.

Table 2. Project Characteristics

Total Percent Size Error
Project Modules Reused' (KDLOC_ Ratec Productivity_

A 158 11 50 8.7 3.5

B 203 34 49 8.0 2.9
C 338 32 106 4.5 4.7

D 2.59 84 37 4.0 4.7

E 327 24 83 4.5 4.8

F 393 47 79 7. I 4. I

G 199 49 57 7.2 2.3

H 245 43 56 6.6 2.4

• Perccm of local modules.

• Thousands of developed lines of code.

¢ EnmN per KDLOC.

• I_veloped lines of code per hour.

Table 3. Design Complexity and Quality

Complexity

Design Quality

S L C" Rating b Class

24.6 8.2 32.8 5 Poor

15.8 9.5 25.3 2 Good

11.8 12.1 23.9 3 Good

18.4 4.9 23.3 I Good

12.6 10.0 22,6 4 Good

22.3 7.3 29.6 6 Poor

18.3 10.8 29. I 8 Poor

19.2 7.3 26.5 7 Poor

• C = $ + L as pr_viomly defined (Equa.on 2).

t, Subjective evaluation (I = best. 8 = worst),

191

Although the correspondence between subjective de-

sign rating and numerical design complexity is not one-

for-one, if the data are viewed as quality classes, they

provide persuasive evidence for a relationship. ¢If one

uses the Wilcoxon rank sum statistic the probability is

less than 0.02 that the observed good/poor grouping

could occur by chance alone.) The objective complexity

measure appears to capture much of the information that

a human observer includes in a subjective evaluation of
design quality.

4.2 Performance Prediction

The other test of the value of these complexity measures

is their ability to predict software development perform-

ance in terms of the productivity and error rate ulti-

mately realized by the development team. A more

complex design will be more difficult to develop into an
acceptable system. However, let us first define a few
relevant quantities:

Developed lines of code--all newly developed source

lines of code plus 20% of reused source lines of code

[16].

Errors--conceptual mistakes in design or implementa-

tion. An error may result in one or more faults (code

changes). These were detected during integration and

system testing (after unit testing).

Effort--hours of work by programmers, managers, and

support personnel directly attributable to a project.

Productivity--developed lines of code divided by effort

(in hours).

Error rate--total errors divided by developed lines of
code.

The developed lines of code metric attempts to account
for the lower cost and error rate attributable to reused

code. Table 2 shows the developed lines of code,

5207
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productivity, and error rate for the eight projects. Note
that together these projects represent more than. 1,000

individual new modules produced by about 50 different

programmers.

Designers and researchers commonly assume that

higher complexity increases the propensity for error.

Potier et al. [18] observe that the imple-rnentatlon

process consists largely of translating design specifica-

tions into a programming language. It usually does not

add complexity to a system. Weiss and Basili [19] show

that the bulk (74-82%) of all nonclerical errors reported
in three of these projects were related to design,

although sometimes at very detailed levels. Figure 4

shows the n_ddi/ir_-h'istribution of errors for the l_l;6jects
studied by Weiss and Basili [19]. Very few of these

errors are true programming errors. Of course, many
detailed design and" implementation errors are detected

during code reading and unit testing (not counted here).

In this context, clerical/transcription errors can be

regarded as random.

Figure 5 illustrates the relationship between design

complexity and error rate. It shows that design complex-

ity effectively predicts the total error rate for develop-

ment projects. Complexity (as measured here) accounts

for fully 60% of the var{ation in error rate. As seen in

Figure 5, all but one of the points lie very close tothe

regression line. In that case, Project B, the implementa-

tion team consisted of an unusually large proportion of

junior personnel (although its design team k,_-compara-
ble to those of the other projects). Conseqoentlyl it

seems reasonable to find a higher error rate than would

be indicated by design complexity alone.

Figure 6 illustrates the relationship between design

complexity and productivity. No clear relationship

emerges. However, as noted elsewhere [20], many

important factors external to the development process -

(such as computer use and programmer expertise)

strongly affect productivity. In this case (consistent with

[201), computer-hours-per-thousand-developed-lines of

code correlates strongly with the residuals from the

Figure 6 relationship (r = -0.79). Computer support

was only provided to these projects for detailed design,
coding, and testing, so it does measure a different set of

activities. However.the srnail sampie size (at the project

level) inhibits evaluation of a more complex model

incorporating both complexity and computer use.
In this organization, the design team forms the

nucleus of the implementation and test teams. Additional

personnel join as they are needed. Thus, the complexity

measure provides an early indication of the performance

of the deveiopmenfteam as well as of the quality of the

design. A good design team is likely to be a good

implementation and testing team, although productivity

may be difficult to predict.

5. REPRESENTATION OF DESIGN STRUCTURE

The numerical quantities defining these complexity

measures are the number of modules, fanout, and I/O

variables. Table 4 shows the distribution of these
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measures by hierarchical level for one project. This

design structure can be represented graphically, as

shown in Figure 7, by plotting the cumulative percent-

age of these quantities obtained at each level. Kafura and

Henry [21] employed a similar technique to show the

effect of design changes on complexity.

In this and subsequent plots, the design structure (or

profile) is simplified by combining all utility modules,

regardless of where they are invoked, into a single

deepest level of the design. That point is not plotted

(utility refers to new or reused modules that are invoked

from several different points within a design but not to

system or standard utilities). Levels greater than or equal

to 10 also are combined into a single level to facilitate

plotting.
As discussed earlier, the conditions that minimize

structural complexity result in an even distribution of

fanout. This produces an increasing growth rate in the

cumulative percentage of total fanout in the initial levels

of the design, followed by a gradual decrease in growth

rate as subtrees terminate. The percentage of modules is

driven by the fanout at the preceding level (minus calls

to utilities). Uneven use of utilities causes the module

line to fail to track fanout. Equation 5 showed that [/O

Figure 5. Relationship to error rate.

variables should be proportional to fanout in order to

minimize local complexity. Together, these conditions

define the shape of a good (low relative complexity)

design.

Figure 7 illustrates Project E, the design with the

lowest relative complexity. It shows three closely fitted

"S" shaped curves. Figure 8 illustrates Project A, the

design with the highest relative complexity. It shows

three separate and irregular lines. Profiles of the other
six projects fall in-between these two extremes in

correspondence to their measured complexity.

6. CONCLUSIONS

The complexity measures proposed in this report are

supported by substantial empirical evidence. The struc-

tural complexity component is similar to measures used

successfully by Belady and Evangelisti [3] and Henry

and Kafura [9] for other languages and application areas.

However, neither of these models, as originally formu-

lated, fit the SEL data very well. The new model

5207
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demonstrated good agreement with subjective assess-

ments of design quality as well as a numerical measure
of error rate. Moreover, all relevant measures can be

extracted at design time; the Henry and Kafura model

includes a code measure.

Table 4. Detailed Design Structure for Project E

Level

Module Average

Executable

Modules statements Fanout

Many software development methods, e.g., [22],

encourage trying design alternatives. Be:aus¢ software

developers can easily compute values for these complex-

ity m_easures at design time, they seem likely to be useful
for assessing design quality and comparing design

alternatives before committing a design to code. Overall

high-complexity designs, as well as individual high-
complexity modules, can be identified. These measures

could be adapted to support a measures-guided method-

ology such as that. proposed by Ramamoorthy et at. [23].

Of course, complexity is not the only important
attribute of Software deSigns_ The minimum complexity

that can be achieved depends on the nature of the

Input/output application and the presence of design constraints.variables..................
Furthermore, design is not a deterministic process. The

2 2 91 6.5 45
3 4 37 4.8 9
4 19 59 3.6 29
5 93 67 2.2 26
6 62 59 2.0 24
7 54 59 1.8 20
8 33 37 1.4 14
9 7 19 0.7 8

zl0 2 8 0.0 5

Utilit)" 51 90 2,4 21

same design approach or method applied by different

individuals can result in different designs. These com-

plexity measures help us to answer the question,
"Which is better?" However, it is not enough to

produce a design that shows low complexity scores.

Following a sensible and well-defined design method

ensures that the design problem is responded to while
minimizing complexity. Measures play a supporting role

in the design process.
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As Kearney et al. pointed out [24], ill-founded

reliance on complexity measures can degrade the soft-

ware development process by rewarding poor program-

ming practices. The approach to complexity measure-

ment presented here satisfies the requirements of

Kearney et al. [24] for effective complexity measures by

clearly identifying the attributes measured, deriving

them from a model of the design process, suggesting

how they can be used in practice, and empirically testing

their validity. Nevertheless, more work remains to be

done.

Three aspects of this current complexity measurement

approach require additional research. First, methods of
incorporating external I/O (e.g., files) into the complex-

ity measures must be developed. [n the systems studied,

much of the external I/O is handled by the GESS stand-

ard interface. Second, the application of the measures

Figure 7. Design profile of"Project E (lowest complexity).

should be extended to designs using different formalisms

intended for different implementation languages. "Mod-

ules" corresponding to FORTRAN subroutines are not a

universal design structure. The SEL has begun to study

the application of these measures to Ada design [25].

Third, the existence of two design complexity compo-

nents suggests that two different types and distributions

of the design errors (in addition to programming errors)

also exist, as proposed by Basili and Perricone [26].

That needs to be verified empirically.

Finally, Kafura and Reddy [27] showed that similar

complexity measures appeared to related to software

maintainability. This suggests another new area of

investigation.
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In this paper we discuss a study aiming at the improve-

meat of measurement and evaluation procedures used in an

industrial maintenance environment, We used a general

evaluation and improvement methodology for deriving a set

of metrics tailored to the maintenance problems in this par-

ticular environment. Some of the required maintenance data

were already collected in this environment, others were sug-

gested to be collected in the future. We discuss the general

measurement, evaluation and improvement methodology

used, the specific maintenance improvement goals important
to this environment, the set of metrics derived for quantify-

ing those goals, the suggested changes to the current data

collection procedures, _and preliminary analysis results based

on a limited set of already available data. It is encouraging

that based on this limited set of data we are already able to

demonstrate benefits of the proposed quantitative approach

to maintenance. Finally, we outline ideas for automating the

discummd approach by a set of measurement and evaluation

tools. This paper emphasizes the steps of introducing such x

quantitativ e maintenance approach into an industrial setting

rather than the environment-specific analysis results: The
analysis results a_re _ntended to demonstrate the practical

applicability and feasibility of the proposed methodology for

evaluating and imProving maintenance aspects in an indus-
trial environment.

In this paper we present results from a study trying to intro-

duce sound measurement and evaluation procedures into an

industrial maintenance environment. The goal of the study

has been to investigate the company's needs for quality

a_essment, and the suitability of the error, change, and

effortdata already collectedin thisenvironment for address-

ing these qualityassessment needs.

First we describe the actual industrial maintenance

environment which has been the object of thisstudy includ-

ing the high-levelmaintenance s_sessment and improvement

goals as stated by high-levelmanagement (section2) and the

goal/question/metric paradigm I'L , used in this study for

defining and quantifying the maintenance assessment and

Thht study was |upport¢d by • grtllt from Burrough| CocportJtion to the Univer-

sity o4" Marr|•nd. Computer time wu provided iu plat through facilitim or the

Computer Science Center of the University ca" Ma.'*yls.nd.

improvement goals of interest. The application of this

methodology has resulted in a list of clearly defined mainte-
nance assessment and improvemed_ go_7.sa.nd-clUgntifiable

questions (section 4) ms well an the corresponding data and

metrics (section 5). Until now only a subset of these data

and metrics required to fullyaddress the stated maintenance

goals had been collected(section 6_.Ba.sec]on the needs of

the partfi:ularindustrialenvironment changes to the data

collectionand validationprocess have been suggested for the

future (section 7). Preliminary analysis r_ults for a small

subset of the questions an_ g0ah-dr interest(depending on

the type, amount and quality of data availabh at the time)
are presented (section 8). It is encouraging that based on

this limited shbset of data we are already able to demon-

strafe benefitsof thisquantitative approach to maintenance.

Finally, we outline ideas for automating the proposed

approach by a set of measurement and evaluation tools(ssc-

tins O). This paper emphasizes the steps of introducing such

a quantitative maintenance approach into an industrial set-

ting rather than the enVir0nment-specific analysis results.

The analysis results are only included to demonstrate that

the proposed approach actually works in this particular
environment.

2, Maintenance Environment

The study was conducted in the maintenance environment of

a major computer company. The maintenance process from

an organizational point of view can be characterized as fol-

lows: Customer Support receives maintenance problems

(mainly) from customers, evaluates them and, whenever

appropriate forwards them in the form of change requests to

Product Assurance. Product Assurance evaluates the

change requests s_aln and forwards them, whenever

appropriate, to Znginessring. The eventually changed pro-

ducts are sent-back to the customer(s) through the same

channels (Product Assurance, Customer Support).

Data are currently being collected during all these

differentmaintenance steps. Customer Support collectsdata

for each single problem concerning scheduling (e.g.,time of

incoming calls,time of outgoing calls),type of problem (e.g.,

clarificationof documentation, operation request;for a com-

plete list see table 2), priorities of problems, and effort spent

on handling the problem. Product Assurance collects data
for etch single change request concerning scheduling, type of

change request, effort spent, and final status (e.g., changed,

change postponed, change rejected including the reason for

CH2442-2J87/0000/0 ] 34 S01.00 © 1987 IEEE
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rejection). Engineering collecm dntn for each change con-

cerning scheduling, change effort, and the type of change

performed, Data collection is mandatory in some groups such

as Product Assurance_ it is done on a voluntary basis in

other groups such as Engineering. Based on this fact the

completeness and validity of collected data varies across the

entire maintenance environment. In general it is true that

Customer Support and Product Assurance stressdata collec-

tion more than Engineering does.

Although this is a very simplifieddescription of the

maintenance process it should allow the reader to under-

stand the differentneeds of these three differentmaintenance

rolesas far as assessment needs are concerned.

The data were used for filingstatus reports concerning

the handling of maintenance requests but not (except locally

in some groups} for overallquality assessment. The purpose

of this study was to find out whether the already collected

data are su_icient for asseming the environment specific

maintenance problems and, ifnot, to suggest changes of this

data collectionprocess.

The most urgent maintenance assessment and improve-

ment goals were formulated by corporate representativesof

the company as follows:

GI: Examine where the bulk of the company's maintenance

dollars are being spent and how much is being spent on
individualactivities.

G2: Identify the best ways of applying the 20/80 rule* to get

the biggestsavings _d return on our maintenance dollars.

G3: Identifyeriteriffifor when k product isready for release.

G4: Identify features of product, documentation or support

that provide a wider customer satisfaction.

Gh: Identify criteriafor when a software product should be
rewritten rather than maintained.

Gf: Identify metrics of customer satisfactionthat can be

developed based upon existingdata.

GT: Develop organizational guidelines for integrating

software quality metrics into the company's framework of

design, development, and support.

It is obvious that these high-leveland complex prob-

lems can only be assessed by breaking them down into more

and more simple problems. This refinement process, which

finallyisexpected to resultin a set of quantitativemetrics,is

supported by a methodology developed by the authors_'e''.

3. The Goal/Question/Metric P&radism

The approach to quantification of goals is the

goal/question/metric paradigm _ a L , This paradigm does

not provide a specificset of goals but rather s framework for

defining goals and refining them into specificquantifiable

questions about the software process and product that pro-

vide a specificationfor the data needed to help answering
the goals.

The paradigm provides a mechanism for tracing the goals of

the collection process, i.e. the reasons the data are being col-

lected, to the actual data. It is important to make clear, at
least in general terms, the organization's needs and concerns,

• Applyln| the 20/80 r_le mesas to identity those ms/ntentaee problenu which cu

be fixed euily (with twenty percent of the efort of what would be requirt<l to B.x

ill malntenLnee problems) but redlee the maintenance overhea_ druticJd|y (by

eighty percent I.
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the focus of the current project and what isexpected from it.

The formulation of these expectations can go a long way

towards focusing the work on the project and evaluating

whether the project has met those expectations. The need

for information must be quantified whenever possible and

the quantificationanalyzed a,sto whether or not it satisfies

the needs This quantificationof the goals should then be

mapped into a set of data that can be collectedon the pro-

duct and the process. The data should then be validated

with respect to how accurate itisand then analyzed and the

resultsinterpreted with respect to the goals.

The actual goal/question/metric paradigm is visualized in

figure I.

Figure 1: Goal/Question/Metric Paradigm.

Here there are n goals shown and each goal generates a set of

questions that attempt to define and quantify the specific

goal which isat the root of itsgoal tree.The goal isonly as

well defined as the questions that it generates. Each ques-

tion generates a set of metrics (re_i)or distributionsof data

(d_i).Again, the questions can only be answered relativeto

and as completely as the availablemetrics and distributions

allow. As is shown in figure I, the same questions can be

used to define differentgoals (e.g.Question 6) and metrics

and distributionscan be used to answer more than one ques-

tion (e.g.m_l and m_.2). Thus questions and metrics are
used in several contexts.

Given the above paradigm, the process of quantifying

improvement goals consistsof threesteps:

(1) Generate a set of goals baaed upon the needs of
the organisation.

The first step of the process is to determine what it is you

want to improve. This focuses the work to be done and

allows a framework for determining whether or not you

have accomplished what you set out to do. Sample goals

might consistof such issuesas on how to improve the set

of methods and toolsto be used in a project with respect

to high quality products, customer satisfaction,produc-

tivity,usability,or that the product contains the needed

functionality.

(2) Derive a set of questions of interest or hypotheses

which quantify those goals.

The goals must now be formalized by making them

quantifiable. This isthe most difficultstep in the process

because it often requires the interpretationof fuzzy terms

like quality or productivity within the context of the

development envlronme_t. These questions define the

goals of step I. The aim isto satisfythe intuitivenotion

of the goal as completely and consistentlyms pcesible.
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(3) Develop •Nt of data restrict stud dhtributtons
which provide the information needed to answer

the questions of inter_L

In this stepl the actual data needed to answer the ques-
tions are identified and associated with each of the ques-

tions, However, the identification of the data categories is

not always so euy. Sometimes new metrics or data distri-
butions must he defined. Other times data items can be

defined to answer only pu_-of a question. In this cruse, the

answer to the question mutt be qualified and interpreted
in the context of the misting information. As the data

items are identified, thought should be given to how valid

the data item will be with respect to accuracy and how

well it captures the specific question.

In writing down gosh and questions, we must begin by

stating the purpcoe of the improvement process. This pur-

pose will be in the form of a set of overall goals but they

should follow a p_rticulxrformat. The format should cover

the purpose of the process, the perspective,and any impor-

tant information about the environment. The format (in

terms of a.generic template) might look like:

• Purpose of Study:

To (characterize, analyze, evaluate, predict, motivate) the

(proce,,m, product, model, metric) in order to (understand,
assess, manage, engineer, learn, improve) it.

• Perspective of Study: /

Examine the (coat, effectiveness, correctness, errors,

changes, product metrics, process metrics, reliability, user

satisfaction,etc.) from the pointof view of the (developer,

manager, custnmer, corporate perspective,etc_. _

• Environment of Study:
The environment consists of the following:process factors,

people factors, problem factors, methods, tools, con-

straints,etc.

• Protein Questions:

For each process under study, there are several subgoals

that need to be addressed. These include the quality of

use (characterizethe process quantitativelyand _ how

well the process is performed, the domain of use (charac-

terizethe object of the process and evaluate the knowledge

of object by the performers of the process),effortof use

(characterizethe effortto perform each of the sub activities

of the activitybeing performed), effectof use (characterize

the output of the process and the evaluate the quality of

that output), and feedback from use (characterize the

major problems with the applicationof the process so that

itcan be improved).

Other subgoals involve the interactionof thisprocess with

the other processes and the schedule (from the viewpoint

of validation of the process model). =,__, : ,

• Product Questions
For each product under study there are several subgoals
that need to be addressed. These include the definitionof

the product (characterize the product quantitatively) and

the perspective of the evaluation (e.g.reliabilityor user

satisfaction).The definitionof the product includes physi-

cal attributes( e.g.source lines,number of units,execut-

able lines,control and data complexity, programming Inn-

guage features, time space), cost (e.g. effort, time, phase,

activity,program), changes (e.g.errors, faults,failuresand

modifications by various clazmes), and the context the l_?o-
duct is supposed to be used in (e.g.customer community,

operational profile).The perspective of the evaluation is

relative to a particular quality (e.g. reliabilityor user

satisfaction).Thus the physical characteristicsneed to be

analyzed relativeto thisquality aspect.

4. Maintenance Gosh and O u_estiona

We applied the methodology described in section 3 to specify

the high-level quality assessment and improvement goak

given to us from a corporate perspective (seesection 2) more

precisely, and to derive quantifiable analysis questions.

Using the template of section 3_roved to be very helpful.

The entire process of specifying goals and deriving the

evaluation questions wu done in very closecooperation with

company representat!ves from Customer Support, Product

Assurance, and Engineering.

The seven goa l- for thil study are formulated ha

terms of the purpose of thk study, the perspective of

this study, and" important information •bout the

company's maintenance environment:

* PURPOSE OF $'IWJDy: Characterize (in the c_ of g0_]s G1 and G4)
and evaluate(G2, G3, and G5) the maintenancemethodologyand
motivst4 (G6 and G7) the use of metrics for the purpo_ of bettar
understanding(GI and G4), management (G2, G3, GS, Gg. and G7) mad
improvement (G,_, O3, G5. G6, and GT)

. PERSPECTIVE Examine thecog (in-theca_ olKoaJsGI, G2, G5, and
GT).problems((_2).errorsand chanKce(Gl and O5),productand pro-
c_ metrics(G3.G4. G5, and G6) and the effectiveness(G71 from the

pointofviewofthemanagerand corporation

* ENVIRONMENT

- Maintenance Process: The customer report_ problems (by phone) to
the Customer Support;it'problemscannotbe resolvedby Customer

SupporttheyaxeforwardedtoProductAssuranceProductawurance
decideswhetherthe reportedproblemshouldbe fixed.It'approvedam
a problem to be fixed it is submitted to engineering {to be fixed), get_
back toProductAmurance (forfix certification),and issentbackto

CustomerSupport : .........

- MaintainedProducts(for which we had access to data). A re_'tevaJ
system(called SYS_I in the followingofthispaper)
and a compiler (called SYS._2 in the t'o|lowinKof this
paper)

For each proceu and product under study, there are

several subgozh (quality of use, domain of use, effort
of u_, effect of use, and feedback of use); each

subgosl will be addressed by • number of analysis

questions (Qi):

=: : .... 7

(A) PROCESS RELATED QUESTIONS:

• QUALITY OF USE (characterise the company's ma|ntesanee
proc_ and how well itis performed)= -

QI What percentof the problems_e handledby Customer Support
withoutforwardingthem toProductA.murance?What tsa distri-
butionoftheirdispo6ition?
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Q_I: What I_WCtat of ©hup rsqumts forward*d to Product Amumaes

do not came from th• field? What is a d/atribution by percent of
where they o_m• from (enspnHring, field test, et¢) tad the tea-

8one they do not come from field7 Whst percent of problem•

aren't r_ly m_utenance problem•?

Q3: For chtage rsqumts rsj*cted by Product Amurance or Englnesring:
What are the dmtribut_om by

z) clonu_ code.
2) orlMmigatioa rmpo_ibl• for rejection, and

8} *¢heduk by closure code by ct'|lmnmtloa _

Q4: What are ch&_cterigic* of the t_t plea pedormed by engmeenng

before reJmme7 How effective i• this _ plan?
More de•ruled: Us th• test suite bmmd upon the new or cbsmfied

final requirements_ Are refirem_on tests performed7 Are the tests

baned upon the importance and complexity of the requirements?
What criteria exist for the selection of test cases and test datn_

QS: What ire test cars and test data for the beta test? To what extent

does it con.qider the future u_le profile _ How e_ective is this
test?

_: For each fix: How Ions *_ter the fix is made is it released to the cus-
tomer?

(_r: What is the distribution of faults or customer problem• per organi-

uttiunaJ unit in tot*l and by various products?

qe: What i* th• dktcibut_on of f.nit4 due to previou* changes per
ccganizationsfl unit m toteJ tad by var:oUJ producte?

Qg: Wlmt are the distributions of change requests by various subclaeses
(fanlt/modificttion, reiected/_ot rejected, error subc|ame•,

• chanse subcl*amm)_

* DOMAIN OF USE (characterise the obJecta of the maintenance

proce_ &nd the knowledge of the people Involved in this
msinteo nnce pr6cew)*

QI0: What products are nv_hd:_le to

- customer support personnel,
- p_obtem •vtJuntc¢,
- changer,
- _tage ev,_uator, tad

- the field support?

QII: Whut ts the knowledge of the people involved wet

1) the spplicnCion,
2) the particular product, tad

3) the change methodology?

• EFFORT OF USE (chse_cterice the effort to perform e_eh

maintenance _tlvlty)*

Q12: Wh_ is the cost o(

d*t_ting s problem symptom
underst4mding the problem,

imvltti_, the problem carom%
duigninfi the change,
tmplementing the change,
testing the change, and

reieMing the change

in fermi of computer time, people time, by person category mud
nmchin* att_ory?

QI3: What m the cldendar time for

- detecting n problem symptom.

- understanding the problem from a customer's viewpomt,
- undemtandini the pmbJem from an mgmeering viewpoint,

- i_stini the problem cause%
- designing the change,

- implementing the change,
- teeing the change, and

- rele_nfi the change?

[Give the max, men, average and by various type• of changes*]

* EFFECT OF USE (eharac_rl_e the output of the m*Intensnce
proce_ and the quality of th[* output)s

QI4 How many tad what percent of documeut_ _re produced/modified

*8 t result of the m_intenanee proce_ (patch. user manual, addi-

tmn,J technical do_umente, c]o_ure form. patch rele'_e informa-
tion form. advanced techmcai information form tad user letter)?

QIS: How many and what percent of change requests cause •
modification?

Qlfi How many and what percent of change requesfa axe related to

errors,,environment adapt•none and requirements changes (_

enhancements)7

QI7: How many and what percent of faults &e the result of a previous
change?

Qtfi: Whut m the LverNLe coet of a chtall;e overall tad by type_

Q19 Having cntegoriz_d change• by function, having made s change in

a function How many future requests do we get for the es_e
function_

Q20: What are characteristicsof customer c_dlsover t_me by type of

question'_

Q21 Wh_ customer categories exmt? Do clusters of customer profiles
(types of complaints, faults, etc.) match these catefior_zation
schemes 7

Q22: Is the _eer m_tisfied with function,pedormance, _chedule (by a user
seem;action survey)?

• FEEDBACK FROM USE (characterise the problern_ with the

appllc*.tlon of the m*lntenan_s procem •O that It can be

|mp_ved)*

Q23 What are the problem areas in the ms6nt, enance procure by the fol-
lowing categories:

- distributionof changes by various types,

- distributionof problems that are r_ject_l by "_ario_ types,

- customer typm, tad

- tame distribution (c*lend& time, e@ort) by vtrious ch_e

types, problem types,or mtintenance activities?

(B) PRODUCT RELATED QUESTIONS:

* DEFINITION OF THE PRODUCT (characterise the

product quantitatively)*
Q24: What are the physical attributessuch te

- m_e (source lines, number of units, executable lines of
code),

- complexity (control,date),

- programming l_gu_q[e features,
- time to develop,
- memory •p*ce, tad

* execution frequency? .._
4

Q2fi: What is the cost, e.&, effort (time per ph_.'e, activity)_

Q_fi: Wh.t are distributionz of changes, eg, errors. |•ults, f_ilures.
sdap_tioxm, *ad anhanesment_ by v*rioue tYPeS

137

5207

2-27



x • z • z • • • x __ • z • z

• s *" z s z z • • • • •

• | • z x s • • ..• 1 • s z x z • • • • • • •

....... t l ......
L 1, t l ,

z I • • x z z • • • x z • • • Z • x z • ,. • • •

I

J

m
Ig

Table 1: GosJ-Oumtio 9 _tT]X

Q27: What is the product8 context, eL customer community,

opera_onsi profile, life cycle model, e_?

Q28: What Lre the problem Lre_ in the product by the following

cst_gor/es:

- distribution of changes by va,rmus types,

- distribution of problems that a_ rejected by vLrious

types,

- cu_omer typu, sad

- time di_*trtbution (caJendaz time, effort) by venous change

types, problem typee, or maintenance _ctiviU._?

Each individu*l evaluation god is quantifiable via L subset of
these 28 evaluation questions. In table 1 the interrelationship
k visuMized in form of a goal-question matrix.

5. Maintenance Data & Metrics

In this section we discuss the types of maintenance data
which has to be collected in order to answer each of the

evaluation questfons derived in section 4.

The data (Di) axe categorized depending on which
maintenance aspect (Customer Support, Product Assurance,
or Engineering) is mainly affected. For each data it is indi-
cated whether and how it can be retrieved from currently
maintained data bases, i.e., whether it is explicitly available

(+), it is not explicitly available, but can be derived from
other data with reasonable effort (o), a great deal of effort
(oo), or it is not available at all (-).

(1) CUSTOMER SUPPORT ORIENTED MAINTE-
NANCE DATA:

For each problem reported by customers (phone call-):

DI (+): customer ideatificaJ, ion

D2 (so): customer type

D3 (+): customer support center identification

D4 (o): problem description

D$ (+): whether a problem resulted in a change requeet (Y/N)

D8 (oo): connection between customer problem a_d change

reque__numher

DT (+): identification of aBectt_l system/product

D8 (-): aientification of aff_tsd product functions

D9 (+): schedules for each activity *mocistsd with a custom*_ prob-

lem

(2) PRODUCT ASSURANCE ORIENTED
MAINTENANCE DATA=

For each prcb]em report4d by a change request:

DIO (+): identification of the o_s.n/r,s_ion that filled out the change

request (c_rtomar support, engineering, field t_t. e_)

DII (+): ideat_c_mu of zryetsm/product a_ec_d

DI2 (+): customer identafic_*aon

D I3 (-): customer t}_t

DI4 (+): ideatiftc_ion o( Product Assurance center in charge

DIS (o): coaeiH problem description

DI6 (o): reformation whether a change r_lut_ was rejected (3(/_

DIT (+): Emd change rsqumt status (-- clomu'e code)

D18 (-): information by whom (Pr0duct-.FtJg_rancd, Engineering) clo-

sure code wig _t

DI9 (+): schedulee for each maintenance activity

D20 (+): information whether it ia L fault, adaptation, or enhancB-

meat

(3) ENGINEERING ORIENTED MAINTENANCE
DATA:

For each actu_]y pedormed change:

D21 (+): ident+flcatioa of _e engin_erio| group in charge

D2_ {-): information about fault types (for example: control, d*_L,

computation, etc)

D_3 (o)_ information whether a fault wu canesd by a previous change

C7/_)
D24 (o): informLtion which product units (modules) were _ect_ by •

change (in terms of linm.of.cod* or identification of

modulee)

D25 t'): effort in computer time in tot*/or per phase, change activity

D25 (-): effort in people time in tot.] or per phu*, change activity

D2"7 (+): schedule for each change activity (in c_dendar days)

D28 (o): percent of code, documents, forms changed

D29 (o): product s*_

D30 (o): product complexity

D31 (-):memory space

The followingquestion-datamatrix(seetable2)shows which
of the 31 differenttypesof data a_erequired/fitffiminimum

to answereachoi"thepreviouslylisted28 questions:
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Table 2: Question-Data MatrLY

The questions enclosed in parenthesis have to be answered purely by subjective data.

The complete refinement process from the original goals over

questions to the data/metrics can be traced by combining
tables I and 2.

6. Avail.billtv and Validity of Dat_

In the previous section it was indicated what data are

needed for answering the questions of interest. We also

included the analysis results to which degree those data are

already available inside the company (+,o,-).

Interpreting the question/data matrix together with the

availabilityand validityof the company's data the following
couclusionn can be draw_:

+- Questions Q6, QI3, QI5, QI6, QIT, Q20 are completely
answerable

- Questions _Q4), (Q5), (QlO), (QI1), (Q22) will not be

answered bMed on data collected via regular data collec-

tion forms, but by subjective data from interviews.

- Questions Q23 and Q28 require no data, they are answered
by interpreting the results of more basic questions

- All questions related to change effort (Q12, Q18, Q25) can

not be answered because (at least in the case of SYS_I and

SYS_2) these data were listedas optional on the data cob

lectionform and thereforeonly listedon about 10% of all

forms.

- All other questions are (at least partially) answerable

7. Imnrovement of Data Collection

Based on the company's interestsas documented by the

high-level problems (see sectio_g 2) and the refined set of

evaluation questions (see sectic_ 4), and the partial lack of
validdata avaiiabh to analyze those questions,the following

recommendations for changing the data collectionprocess are

being made:
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- A uniform data collection method mud data base should he

defined..

Some data items are interpreted differently by different

people. Each organizational unit inside the the mainte-
nance environment has its own data base format. This

fact makes it difficult to assess maintenance problems from

global views. It is for example difficult to analyze engineer-

ing data from various sttee¢_r the complete life cycle of
maintenance problems starting at Customer Support

throughout Product A.msurance and Engineering.

* A maintenance task should be viewed as a single entity in
this data hue, and it should be traceable through all its

phases (Customer Support, Product Assurance, Engineer-

ing). Due to the "bottom-up" development of individual

data banes, each data base contains only thvse data impor-

tant to the individual organization.

The only solution seems to be a central data base that

contains all information concerning each maintenance task

starting from the first phone call and ending with it_ final

resoh tion.

- ft is mandatory to collect engineering data (effort in

gal..hours)
Engineering data are crucial for determining maintenance

problems due to product quality problems (e.g., bad strut-

turn).

- Development data (errors,changes, teSts, etc.) should be
collected.

Collection of development data has to start now. As soon

am the identification of the maintenance problems is com-

pleted, the impact of product quality and development
methodolo17 on these problems has to be anaJyzed. [n

order to do this, data characterizing the development pro-
ceas are needed.

S. Preliminary Analysis Results

In order _o demonstrat, the benefits of quantitative _sseas-
merit of maintenance we used the data collected at the time

to answer some of our maintenance questions listed in sec-

tion 4. We had data available for two commercial systems

SYS_I and SYS_?. (retrieval system and a compiler). We

had maintenance data available from the first two quarters
of 198o.

In section 8 we outlined the questioul which muld b.

answered baaed on the data available. In the following we

present preliminary analysis results of these questions in the

context of the originally posted high-level corporate mainte-
nance problems (1) to (5) as listed in section 2.

(GI) Examine where the bulk of the company's

maintenance dollars are being spent and how mush
is being spent on individual activities:

This goal area can be addressed by the following analysis
questions (see section 4);

* Question 20: (_Arhat are characteristics of customer ctile

over time by type of question ?) _> Table 3

The avera4ge number of catk per problem is about 4.

The most frequent problems are operation questions,
capability features, and clarification of documentation

(in the case of SYSj) or operation fault (i_ the cue of
SYS 2). The costly problems (in terms of number of

calls) are documentation faults, system software, and

Operation faults (in the ease of SYS._I), and clar_caGon

of documentation, capability features, operation qum-

tions, and pre-sales requests (in the case of SYS_2).

* QUestion l _What percent of problems are not reported

change request? What is a distribution of their

disp0dition?) --> Table 4

Overall only about two percent of all problems recorded

by Customer Support resulted in change requests (3 out

of 177 for SYSI, 3 out of 152 fo r SYS_2).

The dlspceition of problems not reported am chan_s
requeet_ in terms of "type of call" is as fo]]o_if .....

The bulk of maintenance problems hudled by Custo-

mer Support is spent for "operation requests_ and
"operation faults _ in the cue of SYS._; in the cane of

SYS1 we can identify two additional problem soureeJ:

problems due to faults of underlying layers (systems

software and hardware) and problems due to bad docu-

mentation (tlm_t 20_ of all problems [)

tin*trot

unkuowo trpt

clarify document

opemtiemquestion
pre-aaJ**requ*st

capability, t_ture
other

decument ftu|t
operation fault

tpplitttioa SW ebonitetequmt
appl[cMJ.ol SW fault

trst_tm S_q ft_tlt

sylt, em SW chaal_e rtque*t

iattl'u_,n limit

HW f*_It
AVERAGE

SYS.

eaR* erobkms

s 20.t_)
l_o _ (io.s%)
_r2 ,e (2e.o_)
7 2 (Ll_)

ss so (16.o%)

_ (o,e_)
so _o(s.e_)

86 t_ (s.s%)
_4 _ (L_)

tdk/erobkm

3.7

3.7

3.5

Z.O
3J
70
5.0

4.0

4,7

3,5

3.9

3.7

SYS.2
tilts "[ _bl*x_ ¢dh/_mbhm

37s- 78 (s_.z_) 41

s4 _ (tx,2_} 4.0
_1 x9(12.5%) 3._

3 1 (o.7_) 3.0

e _ (1.3%) 3.o

4.1

Table 3: All Calls/Problems by Call-Tvua
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ORIG:N,_. PAGE I$

OF POOR QUALITY

cMI-tv_,e

unknown type

clarify document

opera*Joe quNtioa

prt-tldu reqult

c_pability, fsi_,ur*

oti, eT

document fault

operation fro*It

applJeatiop $W limit

totem $W fault

iasLruc_,k_sfault

HW fault

TOTAL

ctJb

5

130

172

T

tit

43

?

4

7

O?

O65

_sj
problerm c'tht/problem

2 (1.1_) 2.6

(io.s_) 3.7

4e (_.o_) s.7

: (Lx_;l s.5

so Oe.o_) s.0

is (7,_) s3

x (o.0_) _.o

zo (s.u'_) 5.0

1 (o.e%) 4.0
xs(8.6_) 5.7
2 (1.x_) s.s
17 f�,_'l _t.9

17411rt(el.s _) s.7

SYS,,S
cilia problems cdls/probl_

.

_ (4.eo_) 4.0
3"r8 70(51.3g_) .Ls
o _ (t.3_) 4.s

e4 IT (11._) 40
01 10 (12.s%) s.2

44 2o413._) 2.2

Is 4 (2:e_l _.*

5 2 [1,3_] 3.5

030 1401152 (tB _) 4A

Table 4: Non-forwarded Calls/Problems by CaiI-TY_¢

• Question" 2 (What percent of problems aren't really

maintenance problems?) --> Table 5

Table 5; portion of Real Maintenance Problems

SYS_I SYS_2

Number of total problems 177 152

Number of mLintenance problems 80 116

percentase 45.2 % 76.3 %

Not all of the problems reported to Customer Support

are really maintenance problems There are, for exam-

ple, lots of requests from different divisions inside the

company. From a global view, all the effort spent in

Customer Support is charged u maintenance effort. In

the c_¢ of SYSI, only about 45% of all problems (80

out of 177), and in the cue of SYS..2, only about 76%

of allproblems (I16 out of 152) are reallymaintenance

problems.

• Question 3 (What is the distribution of rejected change

requests by closure code?) _> TaMe 6

The distribution of rejected change requests by closure
code is as follows:

T_ble 6: Re iected ChLnEe Requests by Closure Code

Systems

Closure Code SYS_I SYS_2

need _dditional information 11 11

not reproducible I
no fix scheduled 3 2

alre_ly fixed 45 25

forwarded to ... 2

works as intended 6 I

works as documented 3

incorrectdocumentation 2

operation problem l l

document required I

not retrofit 2 8

other 2

• Question 12 (What isthe cost of ...... ?)

Because we have no effortdata concerning the Product

Assurance and engineering aspects of the maintenance

process, we only could xnalyze effortas far as Customer

Support wu concerned:

The cost for e_ch individual maintenance problem (as

fax as Customer Support isconcerned) cxn be character-

ized

eakeowe type

clarify document

o_*r ttiolt qua*iOn

pre*s*Im ?tqu ell

eupability, fetter*

other

document fault

opermtlon r,,ult

I _pplicttioa SW chugs requ.t

*ppliestloa SW fault

system SW fault

system SW chum reqe_t

iUtr uct_on flmlt

HW fruit

AVERAGE

SYS.I

Ume (mins) problems time/problem

&2 2 200

701 35 22.6

1203 4e 20.1

38 2 18.0

73_ 30 24.6

247 13 19,0

43 1 43.0

_0_ 10 30.3

1 _.0

15 3&0

16"/ 3 55.8

13 2 6.8

or.3 (miu_)

sYS_
time (rnins) probleml time/problem

247 7 35.3

3723 78 47.7

211 2 I05,5

747 17 44.0

813 19 42.8

522 _0 28. I

20 I 20.0

o

78 4 19.4

8 2 4.0

i g.+

Table 7: ON-Line Spent Effort by Call-Tune
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w

csJl-tYpl

cluify document

[i time (miml)

88S

oplr_iOo quution 7_17

pr*-nJI requ**t 45

ezp,bility, ft*t ure 110$

o_h*r 240

document fLult 117

op_r_ioa rLult 21o

l*pp!_l_ion SW fl*u|t 330

zyer, em SW fault 1125

*ret*m gW chlmlle rqquest I l&

instruction fsuR 20

HW f*ult _ .... 780

AVE_G_ I!

SYSI

nroblems tim¢/problem

36 10.8

48 50.4

2 22.5

30 M.8

13 18.5

1 1170

10 21 0

1 330.0

15 75.0

3 38.3

2 lO.O

Z7 45,9
.... I 4o.s (mine)

time (mine) nrobl*rrm t-lmelDroblem

305 7 43.{I

4062 78 52.1

130 2 (15,0

856 17 50.3

1810 tO 95,3

75 20 3.8

700 4 102.3

335 2 l_T.5

06 _ 32,5

Table 8: OFF-LIne Snent Effort by CalI-Tvon

f_.Y (miu)

- by the number of phone callsper problem:

The average number of calls (interactionswith the

customer) per problem isabout 4 (SYS l:3.7,SYS._2:

4.1)according to table4.

The most crucial problems in $YS I in terms of

number of callsare: documentation faults (7 callsper

problem), operation faults (5 callsper problem), and

system software faults (5.7 callsper problem). In the

case of SYS._2, the most crucial problems axe: docu-

mentation clarifications(4.9 callsper problem), opera-

tion requests (4.8callsper problem), pre-salesrequests

(4.5 calls per problem), and capability/feature

requests (4.9callsper problem).

- by the _ffort spent on-lln, (time spent tdking to _he

customer on the phone .--> Table 7):

The average effort.per problem spent on-lineis about

30 minutes.

In the case of SYSI, most on-lineeffortisspent for

documentation problems (43 minutes per problem),

application software faults(53 minutes per problem),

and system software faults(56 minutes per problem).

In the case of SYS._2 most on-line effortisspent for

pre-salesrequests (105 minutes per problem)

- by the eSort spent off-line(time spent other than talk-

ing to the customer onthe phone ---> Table 8):

The average e_'ortper piob|em spent of-line isabout
45 minutes.

In the case of SYS_I, the most of-lineeffortisspent

for documentation problems (117 minutes per prob-

lem) and application software faults(330 minutes). In

the case of SYS._2, the most off-lineeffortisspent for

system software faults(180 minutes per problem).

(G2) Identify the beat ways of &pplyin$ the 20/80

rule to set the biggest sLv_ngs and return on our
maintenance dollars:

Although we have no finalresults concerning this

matter, a careful interpretationof the resultsrelated

to goal (G1) indicates tha_ for instance better docu-

mentation, in the case of SYSI, could save a big per-

centage of maintenance problems. In a paper not

related to this study an analysis of software m_nte-

nance changes is reportedm; the authors aim at the

development of metrics for predicting where those

changes might occur. Such metrics might help save

dollmm by concentrating resources on subsystems or

modules which can be expected to require mLny

changes.

(G3) Identify criteria for when a product k ready
for relelum:

This question can only be answered ifwe know more

about the type of problems and effort spent in

engineering before release(question Q4) and about the

type and problems during fieldtest(question Q5).

(G4) Identify features of product, document&tion or

support that provide n wider customer satisfLc-
tion:

This question can be addressed by designing a custo-

mer questionnaire. Some of the technlca] problems

definitelyhave impact on the customer's satisfaction,

such as the high number of documentation-related

problems (in the case of SYS_I) or not being able to

keep promi_d d,,tas for cLl|ing Customers back.

(GS) Identify criteria for when n software product
should be rewritten rather than maintained:

Unfortunately there axe no data collected indi_:ating

explicitly which parts (modules, subsystems) of a pro-

duct were affected (question Q26) or whether a problem

is due to a previous change (question Q8).

The only way to address this question by using the

currently available data is to evaluate the actual patch

where the actual lines changed are listed. A paper not

feinted to this study indicates that complexity metrics

characterizing the locMity of changes might be a promis-

ing metric for characterizing the suitability of parts of *
software system for maintenance purposes".

(G0) Identify metrics of customer sat_faction that

can be developed_d u_n exh_ting data:

Based upon the results concerning goal G4 we hope to
be able to develop metrics for customer satisfaction.

Although it is too early to expect reliable metrics, candi-

date metrics might "__ffd|ude-Mpects Such as ability to

keep promised schedules for dealing with maintenance

problems or the frequency of similar (at least from the

customer's point of view) _ m_inteaance problem reports.

(GT) Deveiop organisational guideline* for integrat-

ing software quality metrics into the company's
framework of deign, development, and support:
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This goal represents the second step after having under-

a,ood the maintenance problems and identified possible

improvements, Procedures for monitoring quality and

productivity have to be established throughout the

development and maintenance of software products; the

prescribed data and metrics should be used for manage-

ment and' motivation purposes and improved. Before

this problem can be a_Idreesed in a satisfactoryway

many more and differentanalyses have to be performed;

in particular,data concerning the development phase of

products have to be collectedin order to identify the

impact of the particulardevelopment process on main-

tainability. In a paper not related to this study

interestingapproaches for predictingthe required custo-

mer support for a particular system were presented*.

The prediction approach utilizeddevelopment metrics

among others.

g. Measurement and Evaluation Tools

In order to apply the proposed quantitative assessment

approach practically,data collection and validation pro-

cedures as well as evaluation procedures need to be

automated. A tool system was proposed integrating many

tools already availablein this environment. The whole tool

system needs to be implemented in a decentralized fashion

around a central data base. It has to provide differentinter-

faces to differentmaintenance groups, limiting each group

only to data relevant to their specifictask, presenting the

data in a helpful way. Independent of thiscompany-specific

project, a research project at the University of Maryland is

aiming at the development of a comprehensive approach to

automating measurement and evMuation in the context of

software projects which includesupport of the generation of

goals and questions and the project-specificinterpretationof

measurement resu[tsz 4.

10. Conclusions

The objective of this study has been to demonstrate the

benefits of _essing the software maintenance process in a

quantitative way for the purpose of improvement. We have

been able to show the applicability of the

goal/question/metric paradigm to this cfmp]ex problem
domain and derive first analysis results based on a very lim-

ited subset of availabledata. The long-range benefitscan be

expected to be much more significantprovided the derived

set of data are collectedin the future and interpreted within

the proper context of maintenance questions and goals. In

this paper we have not addressed the psychological problems

involved in trying to introduce quantitativeapproaches into

a traditional maintenance environment. The interested

reader is referred to a book describing Hewlett Packard's

experience (including psychological problems of motiv_.ting

project personnel and higher-levelmanagement) from intro-

ducing metrics into theirdaily software production environ-

ment s,

It was even surprising to us, how many characteristics

of the maintenance process could be made visible by ana]yz-

ink the limited set of data available at the time. This visibil-

ity of characteristics might be helpful in communicating

problems in • more objective sad convincing way.

The analysis result underline the" importance of viewing

software maintenance not as an isolated activity but as

integrated into the overall software life cycle. We can

improve the effectiveness of maintenance procedures by

purely analyzing the maintenance process. However, we will

never reduce the overalleffort(and money) spent for mainte-

nance below a certain limit if we cannot make sure that

software products fulfillcertain quality requirements at the

time of delivery (startof maintenance}. Low qualityproducts

will always cause maintenance problems. Accepting this fact

will lead us to establishquality criteriafor a product to be

released to customers and, thereby, entering the maintenance

phase. As a consequence, developers could develop guidelines

for how to achieve those criteriaand metrics to evaluate the

degree to which those criteriaare actually met. Altogether

this would allow us to develop better maintainable products

in the firstp[_e or, at least, allow us to predict certain

maintenance problems at the beginning of maintenance.

Additional benefits of collectingmaintenance data are to

provide a better basis for judging customer satisfaction,the

company's image, and marketing

If we want to reduce the overall maintenance effortwe

need to apply the assessment and improvement procedures

introduced in this paper to development as well as mainte-

nance of a product. This requires the availabilityof develop-

ment data (as implicated by the evaluation questions in sec-

tion 4) in addition to maintenance data As'long as we do

not assess the overallsoftware lifecycle,problems willshift

from design to coding, coding to testing,and development to

maintenance. It is a well known fact that the reallyserious

maintenance problems originate during the prior develop-

ment of the product; the identificationof these real causes of

maintenance problems willresultinsignificantimprovements
of maintenance.
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Resource Utilization during Software Development

Marvin V. Zelkowitz
Department of Computer Science, University of Maryland, College Park, Maryland

Thispaper ciscussesresourceutilizationove" the lifecycle of
softwa'e develocxr_ntand discusses_ ro4ethat the current
'_atedal" model plays in the actual software ire cycle.
Softwarepcoduction inthe NASA environmentwasanalyzedto
measure_ clifferermes.The datafrom 13 differentprojects
were oo_lectedby the Software Engineering Labotatocyat
NASA GoddardSpace Fight Center and analyzedfor similetl-
ties and differences.The resultsindcate that the water_
model is not very rea_stic in practice, and that a6 technology
intreducos _ pertts'bal_ortsto thismode/withcoctcol0_rdm
executable spec.ifcatkx_, rapid prototyping,and wide-soec-
lnm_languages, we needtomodifyourmodeloftt_sprocess.

1 INTRODUCTION

As technology impacts on the way industry builds
software, there is increasing interest in understanding
the sol,rare development model and in measuring both

the process and the product. New workstation technol-

ogy (e.g., PCs, CASE tools), new languages (e.g., Ada,
requirements and specification languages, wide-spec-
tram languages), and techniques (e.g., prototyping,

object-oriented design, pseudocode) are affecting the
way software is built, which further affects how man-
agement needs to address these concerns in controlling
and monitoring a software development.

Most commercial software follows a development

cycle often referred to as the waterfall cycle. While
there is widespread dissatisfaction with this as a model

of development, there have been few quantitative studies

investigating its properties. This paper addresses this
problem and whether the waterfall chart is an appropri-
ate vehicle to describe software development. Other
models, such as the spiral model and value chaining,
have been described, and techniques like rapid prototy W

ing have been proposed that do not fit well with the

waterfall chart [1, 2]. This paper presents data collected
from 13 large projects developed for NASA Goddard

Addr¢_ correspondence to Professor Marvin V. Zelkowitz,
Deportment of Computer Science, University of Maryland, Cob
lege Park, MD 20742.
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Space Right Center that shed some light on this model of
development.

Data about software costs, productivity, reliability,

modularity, and other factors are collected by the

Software Engineering Laboratory (SELL a joint re-

search project of NASA/GSFC, Computer Sciences

Corporation, and the University of Maryland, to im-

prove both the software product and the process for
building such software [3]. It was established in 1976 to

investigate the effectiveness of software engineering
techniques for developing ground support software for
NASA [4].

The software development process at NASA, as well

as in most commercial development environments, is

typically product-drive and can be divided into six major
life-cycle activities, each associated with a specific "end

product" [5, 6]; requirements, design, code and unit
test, system integration and testing, acceptance test, and
operation and maintenance. In order to present consist-
ent data across a large number of projects, this paper
focuses on the interval between design and acceptance

test and involves the actual implementation of the system

by the developer.
In this paper, we will use the term "activity" to refer

to the work required to complete a specific task. For

example, coding activity refers to all work performed in

generating the source code for a project, the design

activity refers to building the program design, etc. On

the other hand, the term "phase" will refer to that

period of time when a certain work product is supposed

to occur. For example, coding phase will refer to that

period of time during software development when

coding activities are supposed to occur. It is closely
related to management-defined milestone dates between

the critical design review (CDR) and the code review.

But during this period other activities may also occur.

For example, during the coding phase, design activity is

still happening for some of the later modules that are

def'med for the system and some testing activity is

already occurring with some of the modules that were

coded into the source program fairly early in the

process.
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In the NASA/GSFC environment that we studied, the

software life cycle follows this fairly standard set of
activities [7]:

1. The requirements activity involves translating the

functional specification consisting of physical attrib-
utes of the spacecraft to be launched into require-

meats for a software system that is to be built. A
functional requirements document is written for this

system.
2. A design activity can be divided into tWO subactiv_Z

des: preliminary design activity and detailed design
activity. During preliminary design, the major

subsystems are specified, and input-output interfaces
and implementation strategies are developed.[)udng
detailed design, the system architecture is extended

to the subroutine and procedure level. Data structures

and formal models of the system are defined. These
models include procedural descriptions of the sys-
tem; data flow descriptions; complete description of
all user input, system output, input-output fdes, and

operational procedures; functional and procedural
descriptions of each module; and complete descrip-
tion of all internal interfaces between modules. At

this time a system test plan is developed that will be

used later. The design phase _pically terminates
with the CDR.

3. The coding and unit test activity involves the

translation of the detailed design into a source

program in some appropriate programming language

(usually Fortran, although there is some movement _0

Ada). Each programmer will unit test each module
for apparent correctness. When satisfied, the pro-

grammer releases the module t0 the system iibraian
for configuration centre!.

4. The system integration and test activity validates
that the completed system produced by the coding

and unit test activity meets its specifications. Each

module, as it is completed, in integrated into the

growing system, and an integration test is performed

to make sure that the entire package performs as
expected. Functional testing of end-to-end system

capabilities is performed according to the system test
plan developed as part of preliminary design.

5. In the acceptance test activity, a separate acceptance
test team develops tests based on functionai specifica-

tions for the system. The development team provides
assistance to the acceptance test team.

6. Operation and maintenance activities begin

after acceptance testing when the system becomes
operational. For flight dynamics software at
NASA, these activities are not significant with

respect to the overall cost, Most software that is

produced is higidy reliable. In addition, the flight

M. V. Zelkowitz

dynamics software is usually not "mission criti-

cal," in that a failure of the software dos not mean

spacecraft failure but simply that the program has

to be rerun. In addition, many of these programs
(i.e., spacecraft) have limited lifetimes of 6

months to about 3 years, so the software is not

given the opportunity to age.

The waterfall model makes the assumptions that all

activity of a certain type occurs during the phase of that

same name and that phases do not _ T_us
requirements for a project occur during' the requirements

phase; all design activity occurs during the design phase.

Once a project has a design review and enters the coding

phase, then all activity is coding. Sincemany companies

keep resource data based on hours worked by calendar

date, this model is very easy to track. However, as

Figure 1 shows, activities overlap and do not occur in
separate phases, We will give more c_ia on this later_

2. THE WATERFALL CHART IS ALL WET

Table I summarizes the raw data on the 13 projects
analyzed in this paper. They are all fairly large flight
dynamics programs ranging in size from 15,500 lines of
Fo_ran code to 89,513 lines of Fortran, with an average

size of 57,890 lines. The average work on these projects

was 8.90 staff-months; thus, all represent significant
effort.

In most organizations, weekly _ sheets are col'

I_ as _ of cost _couni|ng procedures so that phase
data are the usual reporting mechanism. However, in the

SEL, weekly activity data are also collected. The'data

consist of nine possible activities for each component

Table I, Project Size and Staff-Month Effort

Project Size (lines Totaleffort Staff-
number of code) hours' months

1 i5,500 " 17,715 116.5
2 50,911 12,588 82.8
3 61,178 17,039 112.1
4 26,844 10,946 72.0
5 25.731 1,514 10.0
6 67,325 19,475 128.4
7 66,260 17,997 118.4
8 _ __ _b __
9 55,237 i5,262 100.4
10 75,420 5,792 38.1
II 89,513 15,122 99.5
12 75,393 14,508 95.4
13 85,369 14,309 94.1

Average 57.890 13,522 89.0

' All technical effort, iml_lial prolplumer zad mlp_me_ _me.
b Raw data not avtilable in dart brae,
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Figure 1. Typical life cycle.
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(e.g., source program module). In this paper, these will
be grouped as design activities, coding activities (includ-
ing unit test), integration activities, acceptance testing

activities and other. Specific meetings, such as design

reviews, will be grouped with their respective activity

(e.g., a design review is a design activity, a code
walkthrough is a coding activity, etc.)

Table 2 classifies the data presented in this paper.
Each column represents a type of work product (design,

code, test). The "by phase" part represents the effort

during that specific time period, while the "by activity"

pan represents the actual amount of such activity.

"Other" does not enter into the "by phase" table, since

these activities occur during all phases. At NASA, 22%

of a project's effort occurs during the design phase,

while 49% is during coding. Integration testing takes

16% while all acceptance activities take almost 13%.

(Remember that requirements data are not being col-
lected here. We are simply reporting the percentage of

design, coding, and testing activities. A significant

requirements activity does occur.)

By looking at all design effort across all phases of the

projects, we see that design activity is actually 26% of

the total effort rather than the 22% listed above. The

coding activity is a more comparable 30% rather than

the 49% listed by phase data, which means that the

coding phase includes many other tasks. "Other"

increased from 12% to 29% and includes many time-

consuming tasks that are not accounted for by the usual

life-cycle accounting mechanism. Here, "other" in-

cludes acceptance testing as well as activities that take a

significant effort but are usually not separately identifi-
able using the standard model. These include corporate

(not technical) meetings, training, travel, documenta-

tion, and various other tasks assigned to the personnel.

The usual model of development does not include an

"other," and this is significant since almost one-third of

a project's costs are not effective at completing it. More
on this later.

The situation is actually more complex, since the

distribution of activities across the project is not re-

fleeted in Table 2. These data are presented in Tables 3-

5. Only 49% of all design work actually occurs during

the design phase (Table 3), and one-third of the total

design activity occurs during the coding period. Over

one-sixth (10.3% + 6.4%) of all design occurs during

5207
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Table 2. Development Effort

Project Design Code lmegrafion Accept. test
number (%) (%) act. (%) i_d other (%)

M. V. Zclkowitz

Table 3. Design Activity During Life-Cycle Phases

Project Design Coding Integration Accept. test
number phase (%) phase (%) test (%) phase (%)

m

i

By Phase

I 20.6 38.6 [6.5 24.3
2 16.2 48.4 19.3 16.2

3 21.8 47.9 17.4 12.9

4 35.9 39.5 24.5 0.1
5 18.2 68.8 13.0 0.0

6 16.3 48.6 10.9 24.3

7 19.0 50,4 14.9 . 15.7

8 22.9 48.4 13.0 15.8
9 22,6 68.3 8.1 1.1

10 24.4 44.6 20.2 10.8

I 1 22.7 39,4 21.4 16.5
12 16.9 53.1 10.9 19.l

13 28.2 43,5 20,1 82

Average 22.0 49.2 16.2 12.7

By Activity

I 17.4 16.4 9.9 56,3

2 30.1 39.4 20.8 9,7
3 " 26.3 20.3 19.3 34.2

4 27.3 28.7 6.0 38.0

5 31.0 35.5 9,4 24.1

6 14.9 21.8 24.0 39.2

7 20.2 25.9 14.3 39.6

8 I 1,0 13.9 9.3 65.8

9 31,3 43.5 18.9 6.4

10 38.2 37.3 6.1 18.4

11 29.3 31.0 17.2 22.5
12 23.7 46.5 24.0 5.9

13 32.6 36,3 15.6 15.6

Average 25.6 30,5 15.0 28.9

testing when the system is "supposed" to be finished. In

almost one-third of the projects (4 out of 13), about 10%

or more of the design work occurred during the final

acceptancetesting period.

As to coding effort, Table 4 shows that while a major

part (70%) does occur during the coding phase, almost

one-quarter (16% + 7%) occurs during the testing

periods. As expected, only a small amount of coding

(7%) occurs during the design phase; however, the table

indicates that some coding does being on parts of the

system while other parts are still under design. These
data have the widest variability as a range from 0%
(project 10) to over 22% (project 3).

Similarly, Table 5 shows that significant integration
testingactivities (almost one-halO occur before the

integrationtestingperiod.Once modules have beenunit

tested,programmers begin to piecethem togetherto

buildlargersubsystems,withalmosthalf(43%) of the

integrationactivitiesoccurringduringthecodingphase.

Due tothewide variabilityofthe"other" categoryin

Table 2, Table 6 presentsthe same data as relative

percentagesfordesign,coding,and integrationtesting

I 41.8 33.9 10,0 14.3

2 53.6 31.2 9.2 6.0

3 33.3 37.1 19.7 9.9

4 45.3 32.6 22.0 0.1

5 17.4 69.1 13.5 0.0

6 58.9 30.7 4.3 6.2

7 63.9 15.3 6.8 14.1

8 28. I 56.9 7. I 8.0

9 61.8 38.2 0.0 0.0

10 57.8 27.2 7,0 8.0

I I 58.7 13.7 16.67 10.9
12 58.9 32.8 5.9 2.4

13 60.5 24.7 11.9 2.9

Average 49.2 34. I 10.3 6.4

with the other category removed. As can be seen, design

took about one-third of the development effort and

varied between a low of 25% and a high of 47%--a

factor of almost 2. On the other hand, coding took an

average of 42% of the relative effort and varied between

36% and 49%--a factor of only 1.36. Testing ranged
from a low of 7.5% to a high of 39.5%, with an average
of 22 %, for a relative factor of over 5.

From Table 2, the "other" category was 29% of the"

effort on these projects, and of the 13 measured projects,
other activities consumed more than one-third of the

effort on six of them. The other category consists of
activities such as travel, completion of the data collec-

tion forms, meetings, and training. While these activities

are often ignored in life-cycle studies, the costs are

significant. Table 7 presents the distribution of other

Table 4, Coding and Testing Activity During Life-Cycle
Phases

Project Design Coding Integr/_onAccept.test
number phase(%) phase(%) test(%) phase(%)

I
2
3
4
5
6
7
8
9
1o
I1
12
13

Average

1.4 78.3 11.3 9. I

0.0 72.8 19.7 7.5

22.2 56.2 I 1.8 9.8

16.4 58.5 25. I O. 1

21.2 68.7 10.1 0.0 ,_:

0.5 77._ ..... 1113 10.9
1.3 73.9 15.6 9.2
14.7 54.7 21.0 9.7
5.2 91.1 3.1 0.6
0.0 73.0 _ 22.5 4.5

2.2 70.5 20.1 7.2

0.3 74.8 8.3 16.6

4,6 63.6 26.9 4.9

6.9 70.3 15.9 6.9

iI

m

tp

B

i

lira

5207

2-38



Resource Utilization

Table 5. Integration Activity During Life-Cycle Phases

Coding

Project Design and unit IntegrationAccept.test
number phase(%) phase(%) test(%) phase(%)

1 0.0 _ 17.8 27.4 54.7
2 0.0 45.2 30.1 . 24.7
3 6.1 53.9 21.1 18.9
4 21.0 39.3 39.7 0.0
5 28.4 71.0 0.6 0.0
6 1.0 40.9 17.6 40.5
7 0.5 54.I 26.3 19.2

8 2.9 33.8 19.2 44.1
9 0.0 66.4 29.2 4.4

10 0.0 23.1 41.5 35.5
II 0.0 36.4 35. I 28.5
12 0.1 32.7 22.4 44.8
13 1.5 49.5 28.8 20.2

Average 4.7 43.4 26.I 25.8

335

Table 7. Other Activities Effort In Etch Phase

Coding
Project Design and testing Integration Ac¢¢_, test
number phase(%) phase(%) test(%) phase(%)

I 23,3 32.2 18.I 26.5
2 0.0 9.I 26.4 64.6

3 21.7 47.8 16.8 13.7
4 46.2 30.2 23.6 0.0

5 11.0 67.7 21_3 0.0

6 18.2 4.4.2 9.0 28.7
7 14.4 51.6 14.5 19.5
8 26.5 47.7 I 1.4 14.4
9 15.9 65.5 18.7 0.0

10 12.4 30.2 35..9 21.5
11 21.4 32.2 18.9 27.6
12 47.3 46.6 4.6 1.5
13 42.5 30.0 12.7 14.9

Average 23.1 41.2 17.8 17.9

activities across all phases. While such effort varies

widely from project to project, no general trends can be

observed, except that it does take a significant effort as a .

percent of total costs.

3. CONCLUSIONS

Using data from the SEL database, it seems that the

software development process does not follow the

waterfall life cycle but appears to be more a series of

rapids as one process flows into the next. Significant

activities cross phase boundaries and do not follow

somewhat arbitrary milestone dates. The classical prod-

uct-driven model has many shortcomings.

In the SEL environment, as well as elsewhere, other

classes of activities take a significant part of a project's

resources, At almost one-third of the total effort, it

Table 6. Relative Activity

Integration
act. ('_)

Coding
Project Design and unit
number act. (%) act. (%)

1 39.9 37.5 22.6
2 33.3 43.7 23.0
3 39.9 30.8 29.3
4 - 44.0 46.3 9.7
5 40.8 46.8 12.3

6 24.6 35.9 39.5
7 33.5 42.8 23.6
8 32.2 40.7 27.I

10 46-8 45.7 7.5

II 37.8 40.1 22.1

12 25.2 49.4 25.5
13 38.6 43.0 18.4

Average 36.2 42.2 21.6

might be part of an explanation of why software is

typically over budget, Estimating procedures often use a

work breakdown structure where the system is divided

into small pieces and estimates for each piece are

summed up. Inclusion of a significant "other*" usually

does not occur.

Newer technology is affecting thistraditionalmodel

even more. In one NASA experiment, a prototype of a

project was developed as partof the requirements phase

[8].In thiscase, 33,000 linesof executable Fortran were

developed at a cost of 93. I staff-months--already a

significant project in this SEL environment. When

viewed as a separate development, the prototype had a

life cycle typical of the data presented here, but if

viewed as only a requirements activity it puts a severe

strain on existing models.

Current models do not handle executable products as"

part of requirements. Other questions arise: Are Ada

package specifications design or code? Are executable

specification languages specification or design? When

does testing start?

It is clear that our current product-driven models need

to be updated. Other models, such as the spiral model,

which is an iterative sequence of risk-assessment deci-

sions, or value chaining, which addresses value added

by each phase, are alternative approaches that need to

enter our vocabulary and be further studied for effective-

ness.
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SECTION 3 - MEASUREMENT ENVIRONMENT STUDIES

The technical papers included in this section were originally

prepared as indicated below.

• "Generating Customized Software Engineering Infor-

mation Bases from Software Process and Product Spec-

ifications," L. Mark and H. D. Rombach, Proceedinq$

of the 22nd Annual Hawaii International Conference

on System Science, s, January 1989

• "Software Process and Product Specifications: A

Basis for Generating Customized SE Information

Bases," H. D. Rombach and L. Mark, Proceedinq_ 0(

the 22nd Ann_al Hawaii International Conferen¢_ On

System Sciences, January 1989

• "The TAME Project: Towards Improvement-Oriented

Software Environments," V. R. Basili and

H. D. Rombach, IEEE Transactions on Software

Enaineering, June 1988

• "Validating the TAME Resource Data Model, ''

D. R. Jeffery and V. R. Basili, Proceedinas of the

10th International Conference on Software

Enuineering, April 1988
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Generating Customized Software Engineering Information Bases

from Software Process and Product Speclficatlonn

Leo Mark and H. Dieter Rombaeh

Department of Computer Science

University of Maryland

College Park, MD 20742

J

U

w

m

Aim•rant

Software engineering is a challenging new application area for

information bases. The new challenges are twofold: how

ooftwaJ'e engineering processesand products can be properly
modeled; and, how such processes and products can be mir-

rored naturally within an information bw. Meeting these
challenges requires software engineering and information bun
research. Our "Mean Information Base for Software Engineer-
ing • project at the University of Maryland represents such a
joint research effort. The idea or our approach is to genert_
customized software engineering information bases from formal
specifications of software engineering proce_scs and producte.
The three central research topics are: (i) develop a software
process and product specification language which permits all

the information necessary to understand, control and improve
any given software engineering process; (ii) develop t sets
information base schema which automatically generates u
information base structure given t software process ted pro-
duct specification; and (iii) develop a mapping between the
software engineering oriented and information base oriented

models The generator approach acknowledges the fact that
soft.are engineering changes not only from environment to

environment, but also from project to project, if an informa-
tion base is expected to truly mirror and support a given
software engineering project, it needs to be tailorable to the

changing characteristics of the software project itself. The gen-
erator ba_d approach suggested by our project seems to be the
natural approach to satisfy this import•at need.

This i_•per I_'esents the information base oriented part of our
joint project . it discusses how to represent a set of software

process and product type specifications in • database and how

to use these to automatically generate database support for
process executions and product instances.

Introduction

When we began our research on a Met• Information Base for

Soft.are Engineering one of the first future research topics we
identified was object-oriented database Systems. However, u

the reader may •]ready have noticed, the words object-oriented
were not mentioned in the title or abstract of this paper. While
a number of ohject-orienled databa.s_ systems have been pro-
posed in the past few years tDittrich 86], there seems to be

• We hart tho tut, mi_ted • ptF, r dlseu_in| the eof_wtre engintering oriented pitt mr

our proj*et roe th, *¢_o_.w_, ha|inn•ring Pro, ce_l: Model* sad Aald_l_l* gra_| al

this lime mar, tel*re _tombl_b Im_.

3-2

little consensus as to what such a system should be. Although
our rese_rc_h-will eventually le_ o.r venion of an object-
oriented dattbue system, we are currently using and extending
existing relational database technology, trying to find out how
far it will take us. Others, following the same approach, have

extended the relational model with more semantics [Codd TO;,
provided better support for complex objects ]Dadam g6:, aqd
extended the data definition capabilities with support for type
inheritance IBorgida $8',. The common goal of these efforts,
best described in [Carey 881, is to use and extend existing rela-
tional technology, but to retain<: a powerful non-procedural
query language.

Our joint project is based on the following framework for a

Software Engineering Environment [Rombach 88;:

USER INTERFACE

PLANNING EXECUTION

INFORMATION BASE INTERFACE

INFORMATION BASE

Framework for SEE

This paper concentrates on the following two informalion base
issue:

the represen(ion of t formal specification of • set of
software engi.eering process and product type descrip-
tions using an extended relational data model, and
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- the automatic generation of information base support for

software process executions tad product instances based
o• their type descriptions.

As • basis for addressing the llnt issue we shall, in section 2,
briefly summarize the set of requirements for • software process
and product specification language (as described in our com-

panion paper IRombsch 881). In section 3, we introduce a

graphical formalism for the extended relational model in sec-
tion 4, we •how the representationof formal specifications.

The notion of u Self-DescribingDatabase System IMark 85},

brieflydescribedin section5, is the basisfor the generator

approach discumed in section 6.

Requirements for a Software Process and Product
Specification Language

We distinguish between very general requirements which ack-

nowledge the basic nature of software processes and more

specific requirements [Rombach gS]. '

In this section we shall restrict ourselves to listing the speeig¢
requirement, for a software process and product specification
language from s planning perspective and from am exe-
cution perspective.

Since we want formal specifications in this language

represented in our software engineering information base, the

specific requirements, from a planning perspective, have direct
bearing on the schema design of the information base. Simi-

larly, since we want to automatically generate information base
support for software process executions and product instances
based on the formal specifications, the specific requirements,

from execution perspective, also have direct bearing on the

schema design.

From • planning perspective, the specific requirements for
the specif, cation language include the ability to specify:

1. process, product, and constraint types

2. produce (output) and consume (input) relationships
between product and processtypes

3L controlflowrelationshipsbetween processtypes(sequence,

alternation, iteration, and parallelism)

4. structural relationships between product types (sequence,
alternation and iteration)

5. dependency relationships between process types (Process

PI is dependent of processP2 if every executionof P2

triggers a simultaneous execution of PI. Typically, meas-
u'rement processes are dependent on the construction

processes which they are supposed to monitor.)

6. pre-conditions and post-condition relationships between

constraint and process/product types (A pre-condition of

a process is t constraint imposed upon initiation of this
process; • post-condition of a process is a constraint

imposed upon termination of this process; a condition of a

product is a constraint imposed upon this product.)

7. aggregation and decomposition of process and product
types

ft. generalization and specialization of process and product
types

9. constructive as well as analytic (measurement--oriented)
product and proc_ types

3-3

10 different roles (Different roles are performed in n software

project such as design role, test role, quality assurance

role, or manMement role. Roles define views or perspec-
tives of (a subset of) the processes _d products relevant

to t particular project. Type tad number of roles may
change from project to project.)

II. time (relative and absolute) & space (software structure,
versions, configurations) dimensions

12. dialogues between processes (including human beings)

in section 4 we design the schema for the meta information
base to meet most of these requirements.

The specific requirement, from an execution perspective
for t software process and product specification language
include the ability to handle

!. the instatiation (creation of objects) of process, product
and constraint types

2. long-term, nested transactions (Many softwar_ engineer-
ing processes such as designing may stretch over weeks or

months; in addition, the)' may contain nested activities.)

3. varying degrees of persistence (Some information needs to

be kept forever, some only for the duration of the project,
and othersonly untila new instance(eg. product ver-

sion)has been created.)

4. tolerance of inconsistency (Because of the long-term

nature of software engineering processes, it might be
necessary to store intermediate informs•ann tha* does not

yet conform with the desired consistency criteria)

5. dynamic types (type hierarchies) (an object of type pro-
duct (e.g.,a compiler developedduring one project)may

be used u an objectof type processduring • futurepro-
ject.)

6. non--determinismdue to userinteraction

7 dynamic changes of process speciEcationtypes (It is

impossible to plan for all possible (non--deterministic)

resultsproduced by human beings in advance However,

we would liketo reactto thosesituationsby dynamically

re-planningduring execution Although it isnot • prob-

lem to change a specification during the planning stage, it

might be a problem to change the specifical.ions during
execution while preserving the current execution state.)

8. back-tracking due to execution failures

0. the organization of historical sequences of product objects
and process executions

I0. the enormous amounts of interaction between parallel
activities

!!. the role-specific interpretation of facts (The same process
and product facts mighl require different interpretation in
the contexsof differentroles.)

12.the triggeringof actions(based on pre-conditionsand

post-conditions}

The list of execution-point-of-view requirements is heavily

influenced by the results of a working group during the 4th
International Workshop on Process Specification (More-

.tonhampslead, I.'K, May 1988), chaired by Tom Cheatham
[IW.qPS 88 I, Some of these requirements _ill be meet by our
automatk.ally created information base, hoaever many of them
define topics for future research on information bases.



Graphical Formalism for an

Extended Relational Model

To create t schema for a met, information base that com-

pletely and precisely mirrors the fundamental software

engineering concept, we need a powerful data mode] A data
model consists of t language for defining data structures, •
language for defining constraints, and a language for data
manipulation and query processing. We shall primtri]y concen-
trate on the data structure language in this paper. This

language is an extended version of the relations] mode] with t
number of concepts borrowed from semantic data models and
object orienl, ecl data models.

The ]anffuage supports two kinds of uniquely named domains:
i_icgl and non-lexiegl

." _.-md ".

". , , , ."

Non-lexic,l domains (full circles) model object-sets and lexical
domains (broken circles) model object-name-sets. We shall

aimoet entirely be using non-iexical domains in the
specification. The reason is that we concentrate on modeling
the fundamental software engineeringconcepts and theirrela-

tionships,and postponing the aspectsof how the conceptsarc

lexicallydescribed,represented,and referencedIn an imple-

mentation the non-lexicaldomains willbe representedby sur-

rogates [Hall 76 I, which are system generated, internal, unique
identifiers for object&

Since surrogate values •re internal to the system and invisible

to the user we arc primarily modeling the invhtible part of the

met, information base, and ignoring the vhtible part. Several
important observations are related to the use of surrogates:

1. Surrogates allow us to mode] aggregate objects fairly

e_.sily while preserving normalized relation representa-
tions. Non-procedural query languages, like relational
calculus, can be used for query processing without change.

If a nested relation representatnon_homa.s if' i was used,

allowing attributes with set values, we would rio]ate first

normal form representations and we would be forced to
use a powerset calculus.

2. Surrogates allow us to model generalization in a straight

for*ard manner [Codd TO,, however a slight generaliza-
tion of relational calculus is needed if we want to utilize
inheritance in queries.

3, As far as a database system is concerned, anything stored
as an instance of s lex'ical object type is primitive, and all

the database system can do is insert, delete, or retrieve it,
Surrogates are ideal for modeling the structure of new
user defined object types, providing s means for extenst-
bility. However, the complete structure of an object
must be explicitly represented if the u_er wants to use the

relational calculus to manipulate and answer questions

about the structure of the object.

4. Breaking down everything to obtain an explicit represen-

tation of the internal structure of objects may result in.

inefficiencyfrom t system point-of-view However,

current research on view cache and incremental computa-

tion models show very promising results [Roussopouloe

87]. Inefficiency from a user point-of-view can basically
be ignored because relational views can be used to define a

higher level query interface when needed.

An arrow between two domains represent an h_-a relation

type. In the example below, the object type O has subtypes O l
nmd 0 2. An is-a relation type represent t total function from

the subtype to the supertype. The _et of is-a relation types
define a directed acyclic graph on the set of domains. Var,ous

rules for inheritance may be adopted, however, inheritance

from multiple supertypes is hard to define properly IBorgida
SSi.

Relation types are uniquely na_md.,d_and are re;resented by the

notation below. Attribute, model the roles of the

corresponding domains in relation, Attribute names may' be

omitted, in which case the correspondinHdomain name is used
However, attribute names must be unique within relations

Identifier constraints (double headed trro_ under an attribute

combination) model partial functions from an attribute combi-
nation to each of the other attributes in the relation

KS#4

A.TTR_.'TZ AT'_q

Rather than using relational normalization, we aim at identify-
ing atomic facts. Multiple atomic facts ma> later be combined
into larger relations while preserving at least Boyce-C<_d Nor-
mal Form (BCNT) As is customary in object-role data models

we shall model all concepts in terms of domains The role of

the relations is therefore reduced to capture the aggregates

that form the concepts and to relate the concepts An impor-
tant advantage of our specification language over the tradi-

tional relational data definition language is that it clearly *nd*-
cares that only attributes over the same domain can be used as

a basis for entity joins between relations The relational model
traditionally only supports domains of primitive types and does
not support a strong typing concept.

Although some types of aggregate objects, e g abstract syntax

trees, could be conveniently represented by recursively defined
relation types, whatever that is, we have not considered such
an extension of Our model because databases have a hard time

managing instances that are not all of the same structure and
size.

Our approach clearly allows us to use the relational cairn]u|

for data manipulation and query processing.

A significant advantage of this is that a powerful constraint
definlt]on capability may be based on the relational calculus.
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Although important, we shall postpone further discussion of
the query language and the constraint capability to a later

paper.

Representation of Proce_*I and Product
Specifications

Before we start, let it be perfectly clear that we are dealing with
tAree levels of ,nformation. What we are aboul to design in
gh_ section tt 4 schema - or rather a mean-schema - that

describes all proce_ and product descriptions that can be

defined in the apecufication language introduced in /Rombach

as/
The data stored under LAinschema are, in olher words, process

and product descriptions and can in turn be interpreted 4J the
schema for process ezecutions and product in.stances under
thr_e descriptions. This issue is discl_ssed I'n section_ 5 and 6

The two fundamental concepts inthe specificationlanguage are

proceal descriptionn and product descriptions

Process descriptions and product descriptions are modeled by
the two domains shown below.

@ ®
Instances of process descriptions and product descriptions are

tied to their type through the insert operation Therefore, a

"member" relationshipneed not be modeled explicitly.

We use the concept proceu reeurmively in two wayn.
First, a process description may be an aggregate of a set of

component process descriptions In an aggregation we form a

concept from existing concepts. The phenomena that are

members of the new concept's extension are composed of
phenomena from the extensions of the existing concepts.

Second,• processdescriptionmay be • generalizationof • more

specific process description, in a generalization we form a new
concept by emphasizing common aspects of existing concepts,

but out special aspects. The phenomena that are members of
the existing concepts are all members of the new concept, and

they therefore inherit all the attributes of the members of the
new concept Aggregation and generalization are classical
themes in object oriented databases [Smith 77].

The aggregate process descriptions ,re modeled below. A
process description may be reused in many aggregate process
descriptions Aggregate process descriptions may have multiple

levels, but cannot be defined recursively, (i.e. • process
description cannot contain itself as a component at any level).
This constraint is not modeled below.

As modeled by the second relation type below, some but not all
process descriptions may have names. We have modeled these
names to be universallyunique.Other models are of course

p0ssibiZe.

Within aggregate process descriptions, the component process
descriptions may be _quentiaJ, alternative, pLrallel, or

lt_rat,ed Only process descriptions that are parts of an aggre-
gate process description can be used in any of these ordering

schemes Since process descriptions may be reused in many

:aggregate process descriptions, the ordering must be aggregate

process description specific. Our approach is to model the res-
trictions imposed by the ordering schemes Since parallelism is
not a restriction we need not model it. Sequence is, for con-
venience, assumed to be represented Ln t relation where the

tuples are ordered on the aggregate process descriptions and
subsequently on the component process descriptions. The order
of the component elements will, of course, depend on the lexi-
c,,] representation of their names since it makes no sense to

order on the non-lexical surrogate values Iteration will simply

be modeled M t "goto'.

The generalized process descriptions are modeled below

Notice that a process description may be in more tha_ one gen-

eralization, (i.e., we model a generalization net rather than •
generalization hierarchy). However, the generalization net can-
not contain cycles: this constraint is not modeled below This
model will provide the information needed to support any

inheritance scheme we may want to adopt.

To complete the two recursive definitions, we must model the

fact thaI an aggregate process description and a generalized
process description are themselves process descriptions.

3-5



This model willprovidethe informationneeded to support any

inheritancescheme we may want to adopt.

We use the concept product reeursivel¥ ha two waya.
First, a product description may be Ln aggregate of a set of
component product descriptionsSecond, a product description

may be a generldizatiooof more specializedproduct descrip-
tions.

As modeled by the second relationtype below,some but not all

product descriptionsmay have names We have modeled these

names to be universallyunique. Other models are of course

poisibile.

L._

We model the generalised product descriptions below As
with generalized process descriptions, a product description

may be reused in more that one generalization, (i.e., we model
a generalization net rather than a generalization hierarchy)•

However, the generalizationnet cannot containcycles;thiscon-
straintis not modeled below

This model will provide the information needed to support any

inheritance scheme we may want to adopt:

To complete the two recursive definitions, we must model the

fact that an aggregate product description and a generalized
product description are themselves product descriptions.

To summarize, we have now modeled how aggregate and gen-
eralized process i.nd product descriptions can be defined from

other process and product descriptions Since process and pro-
duct description instances are tied to their respective type by
insertion,we can summarize our complete model (thedashed

arrows indicate "member" relationships that are maintained

through insertion).

All the non-lexical domains are represented by surrogates

Any information about the objects modeled by these surro-

gates, including their lexical representation, will be connected
to the surrogates.

The fundamental relationship between pr_ess executions and
product instsncps is that a proem execution uma set of
product instance_ u input and produces a set of pro-
duct instanceQ u output To model this a_ the process and

product description level, we need the following relation. The

i/o domain consistsof th6 vk|ues_i:o, in).

__li_ilim [/e

Some software methodologies require detailed io information
for each elemenl in a document rather than for the document

as s whole: This requirement is supported by our model

through the use of the recursive definition of process and pro-
duct descriptions.

The concept of mapping is introduced to allow process and

product descriptions in a project .using one soft.are methodol-

ogy _o be compared to process and product des(riptions in a

project using a different _f_are methodology. We must pro-
vide data structures that help the soft.are e_,gineer define
mappings between proce._s and product descriptions in different
soft.are methodologies. We model a rudimenlary mappi_g

definition capability below.
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Before z mapping can be defined, we may have to use the

recursive process _d product definition capability in order to

bring the concepts we want to compare to the same level of

abstraction. Once this is done we can use the mapping
defnition capability.

The notion of user views is very important. User views are

needed for managers, designers, programmers, etc, In general, a

user view is defined u • consistent collection of product and
process descriptions together with a collection of product
instances and data •bout process executions that conform to
the descriptions and are relevant to a particular project.

The notion of s proce_ pre--constraint and post-
constraint on • database is as important as the notion of •

control mechanism in software engineering Since different
pre-constr•ints and post-constraints may apply to awe same
process decription used in different aggregate process des_.rip-

tions, we have to tie the relationship between process descrip-
tion and constraint, to a nartieuhj" ,g_:regate process descrip-
tion. A simple mfdel ,s l-]ll_strateO I:>e|Og'.

Like static constraints in a database, we think •bout the
notion of product constraint as something independent from

the processes that use and produce the product. We therefore
model product constraints as follows:

3-7

We have introduced • large number of databue constraints
between the model of process sad product descriptions and the

• instances of these descriptions The most natural way of main-

taining consistency between the surrogates in •n aggregation
and generalization hierarchy is through the use of a well

defined set of operations for insertion s_nd deletion

Maintaining eonslatency between the ]exicaJ repre_Rnta-
• ions is s much more eompiic•ted problem Fortunately,

part of this problem hua very elegant solution

To control the consistency of lexicLI representations we
only store the lexical representations of the stomin process
and product descriptions, •n object is atomic if it is not defined
as •n aggregate or • generalization Lexical representations of
aggregate and generalized process and product descriptions
should merely refer to the other aggregate and generahzed

process and product descriptions and to the atomic process
and product descriptions directly used in their descriptions. To

avoid storing multiple almost identical copies of atomic proce*s
and product descriptions, we shall investigate incremental file
representation techniques where • new file which is •n almost

identical copy of an existing file is represented by • pointer to
the existing file plus • file differential Techniques of this

nature are discussed in [Roussopouloe g7 i.

The lexic•l representation of non-atomic objects can be
materialized through the use of relational views.

Based on the above discussion we can now model the storing
of lexiea] representations of atomic process and pro-
duct de'*criptlona. What these lexical representations look
like, will of course depend on which language we choose for
their representation.

Currently available database management systems do not
directly support the storing of large, variable size, unstructured
lexical objects A possible but not very desirable solution is to

develop • program that stores these objects on files under
operating system control and stores addresses of the files under
database control.

We model the lexic•l representation of atomic objects as fol-
IOV/S

_la_e d_.mpT

A version normally refers to an object that is almost identical

to another object. In our model, the concepts of process
description and product description can be used to model the
notion of version, and we shall not introduce versions _ a

separate concept,

A configuration normally refers to • collection of versions.

Again, the concept of configuration will not be introduced as •

separate concept because it can be modeled by the concepts
already defined.
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The concept of me-4uremen_ has recently been the subject
of considerableattentionin software engineering.Measure-

meat ca.ube perceivedas a productinstanceor t processexecu-
tion. A measurement can be part of s product instanceor a

product instancein itsown right,or measurement can be part

of a processexecutionor a processexecutionin itsown right A
measurement can thereforebe describedby or as partof a pro-

duct description,or itcan be describedby or as partof • pro-

cess description.Therefore,we shallnot introducemeasure-
meat as a new concept.

Proce_ executionsand product instanceshave severaltime

attributesassociatedwith them. Examples are the actualstart

and end.times of process executionsand the actual time of

creationof product instances Examples of time attributesfor

processand product descriptionsare time of creationand last
time executed and .instantiatedOther time attributesare

.definedon a relativetime scale,(e.g.,one processexecution

must proceedanotherone}.

Time attributesare,however, examples of measurements, and

we shallthereforenot introducethe time concept explicitlyst

this stage.

The purpose of this section has been to provide a formal

schema definitionthatcompletelyand correct])'mirrorsfunds-

mental concepts in our process and product specification

language independently of their lexica] representation.

The nextstep isto definethe lexicalobject-name-setsthatwill

allo_ us to referenceand representthe concepts.It is very

important to understand that the information base is com-

pletely blind with respect to the internalstructureof the

object-names; it cannot see_ use, or_/naintain any iatert/al
structure of object-names, (eg _ object-name-set may con-

sistof a setof Ads programs, hut theyalllookliketextstrings

to the information base) This implies that the maintenance of

any structure of or constraints between object-names is the

soleresponsibilityof the usersand softwaretoolsaccessingthe
informationbase.

Self-Describlng Database Systems

A Self-Describing Database System is unique in that it pro-

vides an a_tive and integrated daf.a dictionary as part of
the database management system Such a data dictionary sys-

tem is essential in our system.

The architect ure of a Self-Describing Database System is illus-

trated _below, iMark 85'v This architecture has recently been

adopted by the ANql; SPARC [Burns S6' as the basis for a new
Reference Model for dataha._e management systems, and it is
the basis for current work in the ISO.

_"-_,........ I

L.................. J
- i , 6,,, ..... .*

C I "b'="I
" i J_
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Architecture of s Self-Describing Database System

The core DBMS supports the well-known point---of-view

dimension of data descriptionwhich consistsof internal,con-

ceptual,and externalschemata. In addition,it supports and

enforces the in_naion--ertension dimension of data descrip-
tion The intension-extensioadimension has four levelsof data

description Application data are stored as data The

application schemata, describing and c0ntrolhng the use of
the applicatldn data., _re stored in the data dictionary The
rule* for defining, managing, and controlling the u_ of
the application schemata are stored in the data diction-

ary schema A fundamental set of rules for defining sch_

mats, (i.e a description of the data models supported by the

Self-DescribingDatabase System), is defined in the meta-
lebema The set of rules in the mean--schema will allot the

management strategies represented in the data dictmnary

schema to evolve in accordanqe with changing data manage-
ment policies Each level of data description in the anions,on-
extension dimension is the extension of the level above it, and

the intrusion forthe !evel below it The m_ta-schema is self-
describing. (i e. it iS one of the schemata it describes)

The core DBMS can be thought of as a DB.MS stripped to the

bones It supports the Data Language. DL, which is the ont_
language used to retrieve and change data and data descrip-
tions at an)' level in the intension-extension dimension The

DL provides a set of primitive operations on an) data element
or data description element at an)" level in the ,nTensJon-
extension dimension of data description An) compound opera-
tions needed must be implemented as a tool in the Data
Management Tool Box using the primitive operations of the

DL Data Management Tools are plug-compatible with the

core DBMS through theDL. "

The basic idea behind our generator approach is to make the

schema designed in section 4 part of the data dictionary
schema above. By doing this, the process and product descrip-
tion instances created through this schema will be Stored as

data in the data dictionary These data may in turn be inter-

preted as an application schema controlling process execuhons

and product instances in a specific software engineering project.
The data describing these process execut,ons and product
instances will therefore be stored as part of the application
data.

To make this work, the semantics of insert operations used

through the data dictionary Schema must guarantee that I)

process and product descriptions are inserted t• the data dic-
tionary, and 2) data structures are created at the application

data level to hold protean execution and product instances con-

forming to these descriptions.

The Generator Approach

To understand the philosophy behind the generator approach
we will consider the data dictionary schema (catalogi of t self-

describing database system.

One of the most important things contained in the data dic-
tionary schema is a relation of relations Simplified, it looks
somH hang like this:

As can be seen,the firstfew tuplesin the relationof relations

contain a definition of that relation itself(its is self-describing)
and other relations de_,ribing the relational data model. The

next set of tuples define the first two relations we defined in

section 4, namely • aggregate process_dent rapt" and

• process_descript n tree'.
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Whenever, a set of tuplesisinsertedintothisrelationof rela-

tions,the semanticsof the insertoperationfurthertriggerthe

creationof an empty structureto hold the extension(data)of
the defined relation•This means that the insertionof the

tuples defining • aggregate_process_deseript" and

• process_dcscript_name" in the above example will result in
the creation of an empty structure in the data dictionary to

holdthe extensionof theserelations.

Let us now turn our attentionto these empty structures.

When we insert tuples in them we are inserting data that in
turn cu be interpreted as defining an application schema.
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In the illustrationabove we have insertedt set of tuplesthal

constitute an aggregate process description The aggregate pro-

tess description defines the development (dec) process to con-
sist of analysis(anal),design (des),specnfication(_pee),and

implementation (impl),and it definesthe design to consistof

high-leveldesign (hi_des}and low-leveldesign (IIdes) The
p-valuesare surrogatesproduced by the system.

These aggregate process description will result in the creation
of two empty structures at the application data level, one for

the aggregate development process and one for the aggregate
design process Into these empty structures we can _tore data

about specifice_ecutionsof the defineddevelopment and design

proem.

We could continuethe example by I) insertingintothe relatzon

"aggregate_ process_ descript_ seq" tuples delining the
sequence of the proteges in the development process 2) insert-

ing into the relation "aggregate product_ descript" tuples
defining the products relevant to the development process and

3) insertinginto the relation"process_ product_ i,o" tuples
defining which processesuse and produce which products.

However, the example we have Ipven is hopefullysufficientto

illustratethe idea.

Conclusions and Future Research

Ideally, the information base ror software engineering described

in this paper will provide support for the automatic generation
of an information base from t formal specification of a set of

process and product descriptions In order to further develop
this idealized information base, more research in the areas of
soft.are engineering an_d databases is required Although we

only list the major database research issues, we strongly beheve

that success in this research area will depend on the tight

cooperation between the two areas (The soft_are engineering
researchissues are listedin iRomb_h 88]).

Future Database Research Issues

There is currently no data model, let alone a database manage-

ment system, capable of supporting a met• information base

for soft.are engineering One of the goals of our research is to
develop the concepts and tools that are .mi_ing For now,

we •re taking • very conservative approach, trying to

use and extend existing relational database technology
to see how far it will take us. There are especially two

things from existing relat*onal technology that _e would like to

preserve s non-procedural calculus query language,and a con-
straint definition capability based on this calculus. V.'e see no

conflict between preserving these and at the same time provid-

ing a more object oriented data manipulation interf=ce between

the soft.are engineering oriented model and the database

model on _hich _e have concentrated in this paper.

Providing an object oriented data manipulation
interface between - the software engineering

oriented model and the database oriented model

will be our next major research topic.
We plan to use the insert, delete, and update operations
provided in the relational calculus to program transac-
tions that will allow us to create, aggregate, decompose,

generalize, specialize, and delete procex's and product

descriptions in a consistent way.



Aainformationb_eforsoftwareengineering must ideally be
adaptable to meet the needs for continuously tailoring software
engineering process_ and products to changing project needs
and characteristics of the project environment tad the organi-
us•ins.

AJa import•at reRateh hmue ht therefore the hzm-
dling of data when its eorreaponding schema

ehadages. The a_lf-de_crlbing database system pro-
vide• am idead framework for lave-tigatinl thht

t.-ue,

Given • formal specification of a programming language, s
document form, etc., it is theoretically possible to automati-

cally produce the Jcbema needed to explicitly represent the
interns/structure of all object6 produced according to the for-

ma/ism, is it practical?

A mador research quest|on la where the *invialble"
pm-t of the databue ends ud the °vhtible" part.
begins. Our approach to this quution is to try to
push the ex_tlng database technology am far u

immibhe.

However, we will eventually have to face the problem of com-

plex lexical object types.

A ma_or reNarch problem ia therefore the support
of extensibillty which Lllowa for truer defined lexi-
eLI object ty_.

Two possible solutions, representing the main streams in object
oriented database _•rch, are to provide tool access to com-
plex lexical objects through _he query language or to store user
defined operations on complex iexical object in the database
The difference between the solutions is minor.

A long list of additional research problem can be derived from
the [is_ Of SpecJ_'_=e_cut]on requlrements pr_nted°_tion

2. Many of these research problems are discussed in [Bernstein
87] tad ace not repeated here.
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A Baals for Generating Cuftomlsed SE Information Bs_-s
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Software Engineering is a challenging new application area for
information bases. The new challenges are twofold: software

engineering specific (how can we model software engineering

processes and products properly?) and information base specific

(how can we mirror such processes naturally within an information

base?). Meeting these challenges requires joint software

engineenng/information base research. The Meta Information Base
project at the University of Maryland represents such a joint

research effort. This project aims at generating customized software

engineering information bases from formal specifications of soft-

ware engineering processes and products. The three central

research topics are to develop (i)a software processspecification

language which allows us to capture all the information necessary

to understand, controland improve any givensoftware engineering

process,(ii)an object oriented information base schema language

which allows us to model the mirroringinformation base structure

for any such software engineering process, and (iii)a mapping

between the software engineering oriented and information base

orientedmodels. Ifan informationbase istrulyexpected to mirror

a given software engineeringprocess,it needs to be tailorableto

the changing characteristicsof the software process itself.The

generator-basedapproach suggested in our projectseems to be the

naturalapproach to satisfythisimportant need. Software process

and product specificationsare expected to have not only an impact

on generating customized software engineering environment com-
ponents (such as information bases). Systematic improvement of

software processes and products - learning about software engineer-

ing approaches and reusing software engineering related experience

- can not be achieved without having a specificationof the objects

we want to improve. This paper discussesgener_drequirements for

software processspecificationlanguages,presentsa firstprototype

software process specification language, demonstrates the applica-

tion of this language and derives software engineering related

requirements for a supporting information base. The actual efforts

aimed at implementing these information base requirements are
briefly mentioned in the conclusions.

1. Introduction

Lessons learned from having monitored the software development

and maintenance process over a decade [1, Ill suggest a high-level
improvement oriented software engineering model consisting of

planning, execution, and learning & feedback stages {4]:

* Planning the software engineering process is aimed at defining

plans for developing quality a priori. It includes choosing the
appropriate overall process model as we]] as the specific methods

and tools supporting this process model. It involves tailoring

each of them forthe projectspecificgoalsand the characteristics

of the project environment and the organization. Process

models, methods and toolsneed to be planned for constructionLs

_'ellas learningand feedback. The effectivenessof thisplanning

processdepends on the precisionin the specificationof the pro-

eess models, methods and tools(formalis better than heuristic)

and the experienceconcerningtheireffects.The entireplanning

processas wellas the tailoringprocessneed to be formalized

• Execution of the software engineering processes follows the

plans derived during planning; the existence of construction

guidelineshelps in assuring that process models, methods and

toolsare being used as intended. Itshould he noted that execu-

tion includes the construction of the traditional project docu-

ments (e.g. requirements, design, code) and all other kinds of

information prescribed by the planning process (e.g., test results,
schedule,effortdata), as well as the analysisof the consLruction

processesand resultingproducts from various (during planning

prescribed)perspectives.

• Learning and feedback followsthe plansdefinedduring plan-

ning. Learning isin part based on the analysisresultsderived

during execution of processes(e.g.,regarding the use of process

models, methods and tools)as well as products.We compare the

actual resultswith the desired results,and feed the lessons

learned hack into the ongoing project (which might result in

iteratingthe projectplans} or into the planning of future pro-

jects. Feedback is important to engineers and managers. An

effectivefeedback mechanism isespeciallycrucialfor supporting

the complex management decisionprocess.

Software engineeringprocesses need to possessthe attributes tailor-

able and tractable. Tailorability is required in order to plan the
software engineering process for the project specific goals and pro-

ject environment characteristics. Tractability is required in order to

specify processesin an understandable way, construct products

according to these plans, and monitor the construction for the pur-
pose of feedback and learning. The TAME (Tailoring A Measure-

ment Environment} project at the University of Maryland aims at

the development or a measurement, feedback and planning

environment for soft_are engineering [4I. Part of this project is to
develop a software engineering information base. The development

of a process and product specification language (although neees-

s4u7) is not part of the current scope of the TA,\_; project.

Our Meta Information Base project project at the University of

Maryland represents a joint software engineering/information base
research effort. The basic idea of this approach is to generate cus-

tomized software engineering information bases from formal

specifications of software engineering processes. The three central

research topics are to develop (i)a software processspecification

language which allows us to capture all the information necessary
to understand, control and improve any given software engineering

process, (ii) an object oriented information base schema language

5207
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which allows us to model the mirroring information base structure

for any such software engineering pr_ess, and (iii) a mapping

between the software engineering oriented and informatmn base
oriented models. The generator appro_'h acknowledges the fact-

that softwac¢ engineering processes change from environment to
environment, but .Iso from project to project. If an information

base is truly expected to mirror.,,. A given software engineering pro-

cuss, it needs to be tallorahle to the changing characteristics of the

software process itself, The generator-based approach suggested by

our project seems to be the n_tural approach to satisfy this impor-
t.ant need. Generating customised software information bases is

not the sole application of software process specifications. We are

also investigating the benefits or software specifications for the pur-

pose of better understanding, planning and improvement of soft-

ware engineering related aspects. We believe that learning about

software engineering tad reusing software tngineerin[i related
experience cU not be doric in a systcmatic way wlthouf-specWylng

the objects of learning and reuse - the software processes o them-
selves. In order to do s good job of learning and reuse, measuring

and analyzing the software processes and their effects seems to be t

very helpful mechanism We therefore suggest not only to model
the construction oriented software engineering aspects, but also the

analysis oriented ones.

Based on our improvement oriented TAME software process model,

we anticipate the following framework for supporting software

engineering processes (see figure I):

USER INTERFACE

F • r
! PLA2qNING EXECUTION

II_TORMAT!ON BASE INTERFACE

INFORMATION BASE

Figure 1: Framework for SE Proem Support

Each software engineering project consists of a planning and execu-

tion stage. During the p]annlng phase plans (specifications) of all

project relevant processes and products get developed; the execu-
tion stage consists of conducting the project according to these

plans. The underlying information base stores all process and pro-

duct plans as well as the information derived during execution of

these plans.'The plans themselves provide the basis for structuring

the execution-derived information. Storing such information tcro_

projects results in historical information bases. Improvement can

then be achieved by structuring this information appropriately
(based on process plans), and reusing it during the planning and

execution phase of future projects after tailoring it to the specific

characteristics of these future projects. Figure ! suggests'that We
need to specify software processes and products for different per-
poses: to support the planning actlvltles at the user interface, to

allow the internal representation of plans, and to support the

storage and retrieval of plans and information derived during exe-
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eution according to plans. In our project,we expect to use three

different (but compatible) specification languages in order to sat*sfy

the differentneeds of each pe_eetive.

This paper p.resentsthe software engineeringorientedpart of our

jointproject , ItdiscussesKeneradrequirements for software pro-

¢ess specificationlanguages, presents first prototype software

specificationlanguages (one to support the planning activitiesat

the user interface,one to represent,plans internally),demonstrates

the applicationof theseprototype languages,and derivessoftware

engineeringrelatedrequirementsfora supportinginformationbase.

The informationbase relatedwork of our project,aimed at imple-

menting these software engineering oriented information base

requirements,isnot partof thispaper.

2. Reaulr.emente for SoAwsre Process & Product Sveclflcation

We distinguish between very general requirements which ack-

nowledge the basic nature of software processes/and more eo_ete
requirementswhose relative importance depends on the purpose of

software processand product specifications.

General requir_enta for a software process specification |sn-

guage include the abillty-to- _

I. specify all aspects that seem to be important within a given soft-

ware project (and not to be Limited to a specificset of aspects):

This requirement acknowledges the fact,that thereexistno com-

monly acceptedsoftwareprocess models today_--±z= _:_ ......
2. specify w{tE Varying degrees of detail and to refine initial

specifications in the future am we learn: This requirement ack-

nowledges the fact that our understanding of some processesis

insufficient, of others is pretty precis#_
3. deal with creative and mechanical aspects of software processes

in different ways (e.g., behavioral specifications for creative

aspects and algorithmic specifications for mechanical aspects):

This requirement acknowledges the fact that software processes

includeboth creativeand mechanical aspects,and that we must

deal with both in a natural wlt_ _ "

4. easily modify prc_ess specifications:This requirement ack-

nowledges the constant need for tailoringprocessspecifications

to changing project or environment needs. _:=

Spec|fle requirements (from a planning perspective) for a

software process and product specification language include the

ability to specify

1- process, product, and c0nstrainCtyp_ _ _

2. use (input}an_d-p_ocTu_e(output) relationshipsbetween pr_esS

and product types

3. (pre-and post-)condition relationshipsbetween constraintand

process/product types (A pre-conditionof a processis a con-

straint imposed upon initiation of tl'fi*sproce_;_a'_t-cond|/.ioo

of a process is a constraint imposed upon termination of this pro-
tess; a condition of a product is a constraint imposed upon this

product.)
4. control fiow relationships between process types (sequence, alter-

nation,iteration, and parallelism]
5. structural relationshipsbetween product types (sequence,alter-

nation and iteration)

8. dependency relationship between process types (Process PI is

dependent on process P2, if ever5" execution of P2 triggers simul-
taneous execution of Pl. Typically, measurement processes are

dependent on the constructionprocesses they are supposed to

monitor.)
7. aggregation and decomposition of process and product types

* We prtstnt *,u_htt patti ditc_sslnS tat iafocmttlo_ %_m orhet*d ptr_. of oar

proitct during the 'Duttbut Formalisms, So_twt/e a. Srtt_ms" session _ th*u

ssme eonferenet [lO].
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8. generalization and specialization of process and product types

g. constructive as well as analytic (measurement oriented) product

and process types

10. different roles {Different roles are performed in s softwace pro-
ject such as design role, teat role, quality assurance role, or

management role. Roles define views or perspectives of (a subset

of) the processes and products-relevant to a particular project.

Type and number of roles maj,_hange from project to project.)

11. time (relative and absolute) & space (software structure, ver-
sions, configurations) dimensions

12. non-determinism due to user interaction

SpeeWc requirements (from an execution perspective) for a

software proce_ and product specification language include the

ability to handle

I. the instantiation (creation of objects) of process, product sad

constraint types

2. long-term, nested transactions {Many software engineering
processes such as designing may stretch over weeks or months; in

addition, they may contain nested activities.)

3. varying degrees of persistence (Some information needs to kept

forever, some only for the duration of the project, and others
only until a new instance (e.g., product version) has been

created.)
4. tolerance of inconsistency (Because of the long-term nature of

software engineering processes, it might be necessary to store
intermediate information that does not yet conform with the

desired consistency criteria.)
5. dynamic types (type hierarchies) (an object of type product (e.g.,

a compiler developed during one project) may be used as an

object of type process during a future project.)

6. dialogues between processes (including human beings)

7. dynamic changes of process specification types (It is impossible
co plan for all Ixzsible (non-deterministic) results produced by

human beings in advance. However, we would like to react to

those situations by dynamically re-planning during execution.

AJthough, it is no problem co change a specification during the

planning stage, it might be a problem to do it during execution
and preserve the current execution state.)

S back-tracking due to execution failures

g. the organization of historical sequences of product objects and

process executions

10. the enormous amounts of interaction between parallel activities

11. the role-specific interpretation of facts (The same process and
product facts might require different interpretation in the context

of different roles.)
12. the triggering of actions (based on pre- lad post-conditions)

The list of executlon-point-obview requirements is heavily
influenced by the results of a working group during the 4th Inter-

national Workshop on Process Specification (Moretonhampstead,

UK, May 1988), chaired by Tom Cheatham [12].

$, Prototype Process & Product Specification Lan agggg_

Several research projects are working towards improving the soft-

ware development process from various perspectives: Arcadia [13],

TAME [2, 3, 4], GEN_S1S [15], and others [12]. No consensus
seems to be reached as to what an appropriate specification lan-

guage should look like in order to be both capable of describing the

important process and product aspects and acceptable co the
intended user.

We believe that no single specification language will satisfy the

needs of software engineers as well as the designers of the informa-

tion base. Based on our SEE model in figure 1, we believe that

there is a need for at least three different language representations:

* the application level language, which is used to support the

task of specifying the relevant process and product aspects dur-

ing the planning stage (at the user interface "of our SE process

model in figure 1). This type of specification language should
accommodate the needs of its potential users (e.g., software

engineers, managers).
• the intermediate level language, which is used to represent"

the results of the planning stage_ This type of specification lan-

guage should emphasize completeness, consistency, and precise-
ness. Complete in this context means executable, independent of

whether this execution requires user interaction or not.

• the information base level language, which is used to formu-
late the storage and retrieval needs of software processes and

products. These needs encompass the process and product

specifications themselves as developed during the planning stage.

as well as the information accumulated during the execution of

those plans during the execution stage. This kind of language is

usually referred co as schema language.

In addition, we need to provide for transformations between adja-

cent language levels. The application level language representation

of s particular software engineering process or product (e.g the

design process) eventually needs to be transformed into the

appropriate information base level language representauon
(schema). This transformation must preserve consistency. The

intermediatelevellanguage representationcan be looked at as a

reference representation acceptable to both the soft-are engineer-

ing and information base perspective. The separation provides

independence of application and information ba_e representations
and it _lows us co co separate the entire research area into two

clearly distinguished but connected (via the intermediate level)

areas. Ideally,these transformationsshould be automaxed; this

would allow us to completely hide the information base view from

the software engineerand vise-versa.

In the followingtwo subsections,we introduce firstprototype lan-

guag--sfor the applicationand intermediatelevel.

3.1. A Prototype Application Level SDeclfication Laneuaae

Our prototype process and product specification language for the

application level is graphically oriented. At this point it provides

graphical elements satisfying the first eight specific planning

oriented requirements listed in section 2:

1. Three kinds of object types: process types (represented

u boxes), product types (represented u circles), and con-

stra[nt types (represented u rhombs).

Figure $.l(a): Object Typm

The concept process is used for all kinds of software engineering

activities. It comprises the elements of our high-level software

engineering model (planning, construction, learning and feed-
back), overall software process models such ar the "water fall"

[7, iS], "iterative enhancement" [5]or "spiral" [8i model, com-

plex methodologies such as the "C]eanroom" [91 methodology.
particular methods and tools such ss "top-down design" or

"Jackson design", and even individual statements of an
automated tool.

The concept product is used for all kinds of software engineering
information. It comprises the plans for construction and learning

and feedback produced by the planning process of our high-level
_ftware engineering model, deliverable products produced by
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the construction process such as requirements, design, code, but
ale0 test data, schedule, resources, *nd all kinds of measurement
data.

The concept conaraint is used to represent -ll kinds of software

engineering conditions (pre-conditions for the execution of a pro-
eess and post-conditions whick.are e]teclte_ at process termini*

tion time}. Constraints may _r_ be imposed on products.Con-

stra_nts are used to model schedules, completeness criteria or any
other kind of quality or productivity characteristic. Constraints

are basically expressed as boolean expressions.

2. Two kLnds of relations l_tween process and product

tylp_J: the use relation (repreannted u • anlid Lrrow con-

netting • product and a proceu type) and the produce

relation (represented ms a solid arrow connecting a pro-
cese and s product type)

®

Flzur' $.l(b): Use/Produce Rel*tio_

In figure 3.1(b), process of type PI uses products of type Hal and

Ha2 and produces products of type OPI, OP2, and OP3.

The relations use and produce are used to explicitly express all

kinds of information needed for executing a process and resulting
from itsexecution Used information can range from experience

(for example, in the form of historicaldata), to products pro-

duced during the same project by other processes, products pro-

duced during prior projects, and characteristics of the project

and project environment. Produced information can range from
deliverable products {e.g. design or code documents} to measure-

ment data or even new process and pro4uct descriptions based
on learning.

$. Three kinds of relationships between constraint types

and protege or product types: prt_condltion, port-

condition, condlt;on (represented u solid double _rrows).

<

Figure $.l(e): Constraint Relations

In figure 3.1{c), constraint of type ¢1 is • pre-condition for a pro*

cess of type PI; constraintof type c2 isa post-conditionfor •

process of type PI; constraint of type c3 is a condition of a pro-
duct of type P2.

The conJfraint relationships are used to explicitly express all
conditions that need to be fulfillec_bei'ore :sta_ r or dter-tet;m_a-

tion of a process, but cannot be expressed via use/produce rela-
tionships or explicit contro] flow rel&tionships between processes.
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Examples are schedule, and all kinds of quality and performance

requirements. In addition,constraintrelationshipsare used to

express expected characteristics or a p_duct; e.g., maximum
complexity.

4. Four kinds of control flow relations between process
types: t_e sequence, _erhd£idn, Wter-_,_;jK-_-d paisa'

relations (represented an solid arrows between procem

types; parallel control flow is indicated through the aug-

mentation of the corresponding arrows with "11").

The semantics of sequential control flow is obvious. The seman-

tics of alternate control flow is to execute exactly one of the

alternatives. The selection criterion can be expressed in terms of

a pre-condition on each of the alternative processes. AJternation

is completely deterministic if each of the alternate processes

possesses a pre-condition and all pre-conditions are mutually
exclusive. It is possible to have nondeterministic alteration (no

constraints} or incomplete alternation (no alternative applies

under certain circumstances), The semantics of iterative control

flow is to execute some process repeatedly. The negated termi-

nation criterion is provided in form of a pre-condition to the

iterated process. It is possible to Specify indefimte iteration (no
termination constraint) The semantics of parallel control flow is

to execute allparallel processes independent of each other How-

ever, all of them must be completed in order to satisfy the paral-
lel c0ntro] _OW relation_

Figure $.l(d): Control Flow Relatioxm

In figure 3A(d), process of type P1 is in sequence with process of

type P2, processes of type P5 and P6 are alternatively executed

after P4, process of type P3 is iteratively executed, and processes

of type PB and P9 are executed in parallel (independently}. The
decision whether to execute P5 or P6 can be based on two

mutually exclusive pre*conditions C5 and C6.

Note: The graphical symbols for data and control flow are dis-

tinguished by their context..Arrows representing data flow con-

nect processes and products, whereas arrows representing control
flow connect just processes.

6. Three kinds of structural relations between product

typee:'the sequence, alternation, and ;teration relations

(represented in the same way as control flow between
process types).

The relation 'sequence' indicates the sequential composition of
two products; the relation 'alternation' indicates the alternate

inclusion of either of two products, and the relation 'iteration'

indicates the repeate<[occur_ehce of a product COormore times)i

We use the same relation names to express the control flow com-

position of process types and the structural composition of pro-
duct types to minimize the number of concepts_

6. A dependency relationship between processes
(represented u dotted double arrows between two

processes).
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Figure $.1(e): Dependency Relation

In figure 3.1(e), P1 is dependent on P2.

The dependmaey' relationship is used to express • very tight
form of parallelism between processes. The relation is directed
and defines • master-slave relationship in the sense that when-

ever the master process is in execution, the slave process gets

executed too. This means more than just to start end terminate

at the same time; it means absolutely synchronised execution.

This concept allows us to model the measurement of software

processes. For example, if we have a design process and we
would like to collect all the effort spent on designing, we model

the design process as the master process and the effort measure-

sent process as the slave process.

7. A _elation between process or product types allowing for

decomposit|on and asgregatlon: the is_part..of relation
{represented &Is dashed arrows lul_ented with the rela-

tion i_,,se)

@
,_ _r, ,T$-

._.. ®.=-.®
Figure -q.l(f): Decomposltion/Aggresatlon Relations

In figure 3.1(f), process type PI is decomposed into (and com-
pletely substituted by) process types Pll to Pln. Product type

P2 is similarly decomposed into product types P21 to P2m

We need to allow for decompoa_Non and agfref,,tion of process
and product types. The decomposition is necessary to describe

the refining of some process or product into more precise (less

abstract) processes or products.

Note: Decompositions are level complete. This means, if a pro-

tess type PI is decomposed in process'types PII, PI2, PI3, and

PI4 (see (6)), then these four processes together make up the

entire functionality of PI (they entirely substitute PI)!

For example, the overall process "development" might be refined

into "requirements analysis', "design', "coding', etc.; similarly,
we can refine the product "deliverable•" into products "require-

meats document', "design document", "source code documents',
etc.

Decomposition is also necessary in order to reflect the hierarchy

of product structure. For example, "system" might be recursively

decomposed into "subsystems", "components" and "modules'.

We use the concept process recursively in two ways. Each pro-

cess type can be decomposed into lower-level process types or can
be included into the aggregaNon of higher-level process types.

This use of the term process can reduce the difference between

an informal method and s concrete automated tool supporting
this method to a difference in the degree of formalism in the

specification. Whereas the method might be described in infer-

real English, the tool might be the complete algorithmic formMi-

zation of the same process. The second possibility of using pro-

tess types recunively is _pecioluation and feneralization. In the

case that one method can be automated by a variety of tools
alternatively, we can view the tools as specializations of the

method, or the method as a generalization of those specific tools.

We use the concept product recursively in the same two ways as
processes.

The relations lef_eacc, _dternaf_on, iteration and paralleliarn (see

4.)are used in the context of decomposing and aggregatingpro-

tessor product types.

The semanticsof theserelationsin the contextof a processtype

decomposition isas follows:Each decomposed processtype either

(a) inherits the entire set of use and produce relations of the

aggregated process types, (b) inherits parts of the use and pro-

duce relationsof the aggregatedprocess types,(c) uses product

types produced by a differentdecomposed processtype and pro-

duces product typesto be used by a different decomposed process

type, or ill possible combinations of (a), (b), and (c). According
to (2), each decomposed process type requires at least one pro-

duet type for use and production. The functionality of the aggre-

gated process type is identical to the functionality achieved by

alldecomposed processtypes ifexecuted accordingto theircon-

trolflow relationships.

8. A relation between process or product types allowing for

specialization and generalization: the is i relation
(represented u duhed &trows augmented with the rela-

tion nine)

.:v p.
i •

Figure $-I(s): Speciallaation/GeneraIisation Relations

In figure 3.1(g), each of the process types PII to Pin is a special-

izationof processtype PI, and each of the product types P21 to

P2m isa specializationof product type P2. P1 isa generaliza-

tionofeach of the Pll to Pln and P2 isa generalizationof P21

to P2m

We need to allow for apcc_eHzaHon and gcneraHzoHon of process

" and product types. Generalization of s set of process and pro-

duct types allows to group them according to some common

aspect.

For example, we can generalize compilers for all kinds of lan-

guages to • general compiler process that translates am aigo-
rithmic source code document into object code. Another example

is viewing all tools supporting a specific method alternatively as

specializations of that method.

In addition we satisfy the specific planning oriented requirements 9
and I0 as follows:

9. We encourage the awareness of constructive and ana-

lytic process and product aspects. Again, the control flow
and structural relations defined for the graphical notation allow

for representing all kinds of decompositions and aggregations.
The success of software projects depends on a sound integration

of constructive and analytic aspects as indicated by our high-

level software engineering model. This fact does not mean that
we should not view them as different aspects.

The constrlctit, c aspects are concerned with generating products,
while the analytic aspects are concerned with secondary informa-
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tion derived from monitoring and Lnaiysing constructive

processes and products.

10. We allow for the deflnltlon of different roles. Roles ace

defined _s projections onto the set of process and product types
defined for some project. They define specific views or perspec-
tives. Different views may include the same process or product

type. For example, the desisrr_bte and the quality assurance role

may both be interested in the design product, but from very

different pempectives. Whereas the design role is interested in
how he can build the design product best, the quaJity assurance

role is emphasizing the adherence of the design product tc stated

qusJity requirements. One role may be performed by sevend

people, or one person may execute several roles. The number of
roles is not predefined, but rather project specific. Roles ace

defined explicitly In practice, different roles will very often be

specified by people with different project experience.

We believe that the concepts kud principles presented in this sec-

tion provide a promising basis for building process and product

specification languages. The objective is to be able to specify all

aspects of a nor%ware proceSS or product (completely), according to
a set of unifying principles (consistently}, and to the [eve[ of detail

possible due to the nature of the problem and our understanding

(precisely).

3.2. A Prototype Intermediate Level Svee' LanEusae

The intermediate level specification language is specified in BNF-

style. Appendix (A) contains the syntax rules necessary to specify
proceSS types. The necessary context rules are not included in

Appendix (A).

This language allows us to specify a given process type (or product
type) at any desirable and possible level of detail. Each process

type specification consists of a procc,e_hesding and a process_body.

The process headlng describes the unique processtype_name,

wheream the processbody contains the actual specification. The
process_body consists of a proeeisjpecification_part, a
role..#pccQ_e_tlom p_rt, and a re#o_eee_suqnmcnt part. The

process_specification_par_, contains in intcr/ace._port, a

rcfincmcnt..part, and an _mplcmcntaffon_part. The interfaee_pa_
characterizes the used and produced product types and the
attached constraint types. The refinement_part describes the

r_finement of this process type into lower level processes (includes

dso the refinement or the related products and constraints) and

defines their connections st this lower level. The implementation

part contains the final algorithmic implementation of * process

type. Refinement and implementation pacts exclude each other;
either a process type sets refined further or it is at its final level of

derail. Refinement and implementation parts are optinnal. The

role_specificatinn_part defines all roles. Roles elm be viewed as

'super' processes. The resource_assignment_part amaignsresources

to processes and/or roles. The resources are specified like product

types. This includes the ability to refine them. [r we have several
organizations of people involved in executing a certain process, we

can model each organization m a resource consisting of people
resources. The pe0duct 6ody of product" type specifications consists

only of a refinement_par/and i,nplcmentaffon_part.

This prototype language allows us to satisfy the planning oriented

specific requirements llsted in section 2. The current languqe

definition is by no means final. We plan on using it ss an experi*

mental vehicle allowing us to validate whether tl_e Chosen concepts

are sztisfactory for speclfying all kinds of process and product

related software engineering aspects.

/. ADvlication of the Prototyve Sveclflcstion Lanfuafes

The validity and usefulness of our software engineering process

model depends on whether we are able to (a) generate specifications

for all kinds of process Lnd product types using our languages, (b)

make project personnel use the specification languages during plan-

ning as well as the generated specific models during execution and

learning and feedback, and (c) generate an information base sup-
porting the planning of process and product types (store and reuse)

and the execution of instantiations of process and product types

(e.g., instantiation itself, storing information accumulated during

execution) ........

So far we have been able to specify a number of process and pro-

duct types using our graphical notation. The specified process

types include a variety of existing proiect models (eg. l17_j) _ well

as specific development methods: The completely automated ver-

sion of a process type is a too[. We would be able to represent any

structured implementation of a tool using our control flow rela-
tions.

The answer to part (b) requires more work. h seems that our pro-
cess model and languages will be useful during planning for

describingaspects of constructionand learning and feedback sm

well as the consumed and produced products completely, precisely

and as formal as possible It should also help execution and learn-

ink and feedback in that itshould be ea_, to followthesekinds or

complete, consistent and precise plans. The degree to which execu-

tion can be supported will depend on the degree to which we will
be able to satisfythe specific,execution oriented requirements

listedin section2.

Our initial answer to part {c) is presented in ilOi. -.

In this section we will apply our two prototype specification lan-

guages to a small example. W'e will introduce the example in sec-
tion 4.1, demonstrate the use or the graphical prototype application

[eve]language in section42, and show how the fin"]plans c_n be

represented using our prototype intermediate level language in sec-
tion 4.3.

The example we have chosen to demonstrate the applicability or

the two prototype languages is a subset of the design related

aspects out of the context of a larger project

The examp/e can be characterized as follows;

Specify a process type for the design phase (named 'design') that

consumes a requirements product type ('r') and produced a design

product type ('d').The design process type consistsof two sequen-

tial design sub processes for high-leveldesign ('hldesl_n')and

low-level design ('U_design') We want to use methods for high-
level design ('yourdon') and low-level design ('pdl'). The design

process will start on date t_l, and has to be completed by dace t_3

t1_3 High-level dtdign should be completed by date t_2 =ffi

t_1-_1. In addition,the artuM effortspent for high -leveldesign

('hleff') and low-level design ('lleff'). the number of low-level design
errors ('llerr'), and McCabe's complexity of the low-level design

products ('v') must be measured for qu*]ity assurance purposes. A

low-level design product will not be accepted if its complexity

v_ue exceeds 20. The design process will be performed by five

people. One person is assigned to perform the high-level design.
Three people, including the person who performed the high-level-

design, arc assigned to perform the low-level design. A fourth per-

son is assigned to peer?rathe quality assurance activities; a fifth
person is assigned to mznage the project.

_2. Specification of the Exam_l_e__J_d_

We apply our graphicalnotation to specifyallaspectsof the exam*

pie describedinsection4.1. except the sesignment or people. The

sequence of specification steps is not predefined We have chosen to
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specify the example according to the three identifiable roles

(designer, quality assurance, manager):

I. DESIGN ROLE:

1.1. Specification of the use and produce relationships associated

with process type 'design':

Figure 4.2(a): Specification of design process and producta

Figure 4.2(a) describes our initial specification of the example

described in section 4.1.

1.2. Decomposition of process type 'design' into 'hldesign' and

'H_design' (with sequential control flow) and decomposition of

product J,ype 'd' into 'hid' and 'lid' (with sequential structure):

," '_ h 'lmrt':al

_j,J •

Figure 4.2(b): Deeomlxmition of 'design' and 'd'

Figure 4.2(h) describes the decomposition of process type

'design' into process types 'h]..design' and ']ldesign'. The

control flow between 'hi_design' and 'll._design' is sequential;

the aggregation of product types 'hid' and 'l]d' into.'d' is

sequential.

1.3. Decomposition of 'hi_design' into 'yourdon' and 'lid' into

'pcU':

b___d

' _................. '® ':'

Figure 4.2(e): Decomposition of 'hi_deslgn' and 'll design'

Figure 4.2(c) describes the decomposition of process type

'hi. design' into 'yourdon' and product type 'lid' into 'pdl'. The

decomposition relation is used to describe this refinement; in

addition, we could also use the specialization relation to indi-

cate that 'yourdon' is a specific instance of 'hl design' and

'pdl' of _]d'.

2. QUALITY ASSURANCE ROLE:

" 2.1. Specification of measurement 0rien_d process and product

types:

II II, I

Figure 4.2(d): Spec_cat_on of meuurement processes

Figure 4.2(d) describes the measurement of 'hlerr' via process

type 'counterrors', 'hhlT' via process type 'count_hi_eft', 'Heft'

via process type 'count_ll. eft', and the McCabe complexity 'v _

via process type 'compute..v'. The process types 'count_errors',

'count_hi_effort' and !count_ll._efl'ort' are dependent on process

types 'yourdon', 'yourdon' and ']l_design', respectively.

2.2. Specification of constraints:

r--, _ s_,tw_ i m.

Figure 4.2(e): Specification of process and product constraints

Figure 4.2(e) describes how the constraint types e_l, c2, and

c_3 (which use the boolean expressions 'calendar_time = t1',

'calendar_time <-- t2', and 'calendar_time <-, t3') are

assigned as pre-condition co 'yourdon', post-condition to 'your-

don', and post_condition to 'II design' respectively• The con-

straint type c4 which uses the boolean expression 'v (pdl) >

20' is assigned as a pre-condition to 'll._design' to indicate
another iteration.

3. MANAGEMENT ROLE:

4.1. SpeeiaIisatlon of 'hi_design' and 'lld':

• _- --_ ........... ,

Figure 4.2(I): Specialization of 'hi design'

Figure 4.2(0 describes how the specific design method 'your-

don' can be categorized as a specialization of the process

%I_design'. There exist other possible specialiZationsl e.g., the

object oriented design method 'ood'.

4.$. Sveelfieatlon of the Example (Intermediate Level)

In this section we give _ example as to how the specification infor-

mation produced using ,he application level language in section 4.2

is represented internally using the intermediate level specification

language. Each of the objects (process and product types) men-

tioned in section 4.2 is represented by a separate intermediate level

specification. However, each specification will combine all the infor-

mation that relates to a specific object completely, independent of
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the sequence in which it ha_l been created.

As an example, see give the specification of the process type

'design'. This specification includes the refinement of 'design' into
"eldesign' and 'll_design _ (step 1.2 in section 4.2.), and all related

quality umuranee aspects (see steps 2.1. sad 2.2. in section 4.2.).
The intermediate specification _of this scenario is contained in

Appendix (C).

The interlace_part contains product types 'r' and 'd' as well as

constraint types 'c._l' and "c..3". The next refinement level is
described in terms of decomposed types (see decomposition_ptrQ,

imported proccml, prodsct, and con, traint I),pc spcc/fications (see

use_.pu."Q, and rsla:ions _etlv_en all tAose types (see
connection.part). The '*' is used in the decomposition_part to
indicate that a non-determined number of vrocesses Of type

'11 design' needS to be instantiated (for each module one). Each of
these instantiations will produce a product of type 'lid'. The

rolespeclfication,part identifies _11 roles recording to the way

information was provided at the user interface level (see section

4.2.). In the resource_a_signmeht_oart, people resosrees (p_l, ..-,

P_5) are assigned to execute certain roles ('quality assurance_role',
'msaagementGole') and/or process types ('hi_design', 'll..design').

/_da S_eiflcatlon of the Examole (Information Bue Level]

The example in APPENDIX (C) is only one of the specifications to
be stored in a supporting software engineering information base. A

complete I_t of specification objects according to our example is
contained in Appendix (B). Remember, these objects comprise

only the planning part of what needs to be stored in an informa-
tion base. In addition, the information base must be capable of

storing all the information derived during execution of these pro-

ee_m type specifications.

_Informatlon Base Reouiremeuta!

"['he role of software engineering information bases is to mirror the

software processes and products rehvant to a project or entire
environment. Assuming our improvement oriented software pro-

ce_t model (consisting of planning and execution stages for each

project), a supporting information base needs to be capable of stor-
ing the process plans as well as the execution derived information.
In our case, plans are the intermediate process specifications intro-

duced in section 3.2 and demonstrated in section 4.3. These plans

could also provide the necessary information for organizing the exe-
cution derived information. Obviously, in the case of our example

in section 4, we would like to see ,11 the plans listed in Appendix

(B) stored in an information b_se.

A list of important requirements for designing an information base
interface are identical with the requirements (genera] and specific)

listed in section 2. Additional requirements can be found in [6, 14].

The specific planning oriented requirements that are expected to
allow us to specify all aspects of software processes and products

seem not to be the problem as far as the information base is con-
cerned. It is not clear at this point, whether all the execution

oriented specific requirements can be easily satisfied with state-of-

the-art database technology. It is not even clear, whether all these

execution-oriented requirements should be dealt with inside a per-
sistent database at all. Our first approach to generating a software

engineering information bast from process and product

specifications is described in [10],

5207

0. (_urrent Status and Future Work

The specification research goal of our project is to develop a formal

language for specifying all aspects of software processes and pro-

ducts in u complete, consistent and precise way We do not believe
that all aspects cam be formalized in an algorithmic manner. How--

ever, we believe that even those creative aspect_ can be described

as integrated into the overall software development and mmnte-

nonce process; this integration would make them accessible to con-

crol to a certai n degree. We have developed first prototype lan-
gnage definitions and have them manually applied to specify small

but realistic software engineering scenarios. This limited experi-
ence seems to indicate that the concepts chosen for our languages.

are promising. We need to further experiment with these languages
and refine them. We be!ieve that feedback from a variety of peo-

ple is essential in order to improve the m incrementally. It is how-

ever, not realistic to expect other people to apply our languages

manually. Therefore, the mc_t important next step is to prototype

both languages. Out of the list of twelve planning oriented specific

requirements, we are least satisfied with our solution to represent-

ink the relationship between time and space dimensions Our
current specification approach seems to be too static. [t isnot pos-

*ibis to convey to a user the fact that, e.g., in the case of our

example in section 4, we have to instsatiate the low-level design

proce_ for eaehm_ul_.._at has been identified during high-level
design (or even for each person and module?). Other important
research aspects are related to the execution-related specific

requirements listed in section 2. Most of all, we have to come up

with a good mechanism for instsatiating process and product

types.

The information base research goal of our project is to develop an

(eventually) object oriented information base interface supporting

the planning sad execution stages of software projects_ The design
of this information b,,,e interface is inspired by the software

engineering oriented requirements. Eventually, we would like to

generate customized information bases from process and product

specifications. We have developed a first approach for mapping

process sad product specifications into a information base schema
I10]. We have implemented a first prototype information base

(based on relational database technology). This prototype will be
used as a vehicle for validating and improving our approach. For

the future, it is planned to integrate this prototype into the proto-

type of the measurement and evaluation system TA,N/_ I2, 3, 4].

The major future research issues besides refining and automating

our prototype specification languages are to effectively support the
reuse of process specifications, their tailoring to new project needs,

the different roles of a single process specification (role specific

interpretation of facts), sad all the execution oriented specific

requirements listed in section 2.

L_f,_o_az!aliam

We are aware of the huge dilemma between the need for specifying

software processes & products and the unsatisfactory degree of

knowledge how to do it properly_ Understanding software processes
better is necessary for making progress in software engineering.

Being able to specify a process is the fundamental basis for sound

understanding, training, execution, control and improvement as

well as generating appropriate automated support.

Our two prototype specification languages reflect our current
understanding of how to capture the important process and pro-

duct related aspects. We believe strongly that the only way of

improving our current understanding is experience from practical

application. This requires us to have some initial language nota-
tion. This statement should clarify the fact that we do no_ view
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these initial language definitions as being final. They represent a

vehicle for furLher learning The initial applications (one of which

is described in this paper) have already helped us in understanding

important process specification issues as well u in giving us a sense

of the potenti -I and limitations of our approach.

We will continue refining our languages based on experience. We

are espeei*lly interested in using.such process specifications as.
basis for generating customized environment components, e& soft.

ware engineering information bases If01. We hope that this paper
will inspire other groups involved in process specification research

as well as result ia feedback from those groups regarding our initial

approach.
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APPENDIX (A): Intermediate Level Language Definition:

_) START 'L.4NnuAoW" OPL_k41bAAR':

SR_I: _.4flm> _:-- <pc_..pSH,> I <prsduet .*In>

--) START 'PROCESS PLaN GRAMMAR':

SR_9_ <@_,esw pin> ::-- <pr_,s,_ba,dlal> _¢,_m.bILb.>

" _> START 'PROgrESS.PLAN HEADING O_AMMAA':

SR_J; <4m_emm_baodUql > ::_ <pr_u¢_,?y,¢_same> : PRO<:ESS PLAN _t_mmml >

_ START 'PROC1ESS_PLANJI_DY CRAMk4AR':

<;re**two_liked*cited.pitt > _m_r¢_ m_m_msjm_>

_> ST,_RT 'PRO_S$_PLAN_$P£_r ICA_ON_PA_T GKAMMAR':

_" START ?R_._S II_:G"I_'I_A_'ION Rrri_qEM_'?¢T_PART GRAMWIAR'_

SR_I#: <l_ecm___h_emes¢ J_w_> ::. REfINEMENT_PAR.T:

<d_¢ompomki*m.p_ >

SRII_ _ ___brt_ r:m L'SE_PART= <q_¢ t_e__et bedy >

SR_{_: _J___a__pm bed_) ::. <gbrvT._y1_> 1,0_brsry_ty,pe_. ,_s,p41_ _e.,pl,'q_bedy)

l <,,"at>

<:pre_ dec* ripe lit ;e_ ), <pr sce_ _d_ elp4pe_ea .pa65 )

SR I1_: _4_rm d_wmpetitlell> :!_ _._¢_¢e_ t71_.l_sm > D[_Ot4POSll.S_lN,ro

SR_I_: <ff'e4h__dl_-_ mp_wt_>*" ::-- <_'*d__tyl)_ _, > D[OOI,(POSES IN TO

SR__: <_-*d_tt ¢_> ,-.. <:$1_I_LAN_I >

<e o_,t r sire derempoms_m >, _¢_e_e_mt deee mp4*;_iom.psa5 >

< ,,_._ _*_t> x=rdl_LAN_l>
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APPENDEK (B): Process ,nd Product SpecU%.mion 7_pe,

(Ex.mple of *ectio. 4.1.):

¢I;
_mlm; imlm *PlsmPl -. : ¢_,

b,l_4*.,_; _ M de,,t- - ; c__+
_rde_ _wN_ll_+lm; ¢.q;

p.L

Imiell: p I:

APPENDIX (C): Proce_.. Sp, eciflcatlon of p,oce, 'des;+

(Example of section 4.1. _:

|llltl ): P ROC'I_ PL,AJ_
OOMMENT: **.'"'"""

I;ROCE3_ SPECIFICATION.PART:

COMMENT: .*.---------;

_q_ERFACE_PART:
COMMENT: *****eeoeee

CONSUM r_: r:
PRODUCES: d;

CONSTR_TS: c_t. ¢..I;

REFINEMENT PART:
COMMENT: .e.e._._

¢OWtI _t_ cqmmt bi _ t-ram4 II _ ml_4 PROCESS pLaN
_k_y_ k L-_. ]Id[, v: PRODUC_'_P[.AN;

¢_t, ¢_4(_1)! CONSTRAINT
DECOM POSe'ION_PART:

d_ip DECOMPOSES_INTO Mo4m_+ I_
d DECOMPOSESJNTO bid, IM ;

CONN£CT3ON_PART:
kl_d_m U5£3 _,

b_'[_;l_ PRODUCI%S bid.
ll_d_¢a PRODUCWS lid.

rmmt_*e_ PRODUCE.S bJ_.
_t b; _i*n PRODUCES bldl.
e_l i el_.t PRODUC_S
_omlmte _ USrS I_.
cempu_ = PRODUCIPS _.
M+d*.q. 5E_ (P*,RXLL (H__')),

_m_l _ DI_PrND$ ON hi dm_sL
¢_t kl ,Ibrt DEPENDS_ON _J__*_m,
c_t_I__llert D_Pr_Os_oN II_dlq_.

ITER (lll _sip,¢ l||,
c l IS PRECONDITION_FOR bl d_qpk
¢_I IS POST_CONDI_ON POX fl__mK
¢J IS_POST_CONDITION.FOR bl__,

c4 I$_PRE CONOI_ON_OR ll._m_;

tM PLEM ENTATION _PARI_
COM MENT_ *'+''"+'+"

+ ±

_OL_.SP EI_'_rlCATION .PART:
COMMENT: **"'""""

_TERrACE: r. kid+ Id. c_l, e_, ¢JI, c.t

INT_RPAC_: ¢.I, ¢.+, ¢I. 14, _, _. M, +
bl_dmiln, l_dmql, Id

ACTIONS ¢+_ml._+ere, cmmt J_J_ef[_t, cNt_,_de_,
_mmpu__+

IN_RPAC=E+
ACTIONS: .

RESOU R C__AS$1G N M EN T_PART:

CX:)MM EHT_ **+.n.u.

use _p_utl_.
p_l, p_l. p_l, p_4, p_l: R_U_

OONN r C'TION PART:
p__! IS.._SSIGNIrD_TO IN.4e_IL
pjI ISJ*SSIGNED.TO II d_qlk
p_ IS._SSJGNED_'ro I_d_
p_ IS__SSIGNED TO l__

p¢ IS__SSIGNED.TO _p,=lh? M_rice__
lS_SIG__T_ Iron.lemming,

i

i

=_
mm

1111

II

m

lm

= =

mm

t

il

U

u

m

i

5207

3-20



758

The TAME

[EEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO 6. JUNE 1988

Project: Towards Improvement-Oriented
Software Environments

VICTOR R. BASILI, SENIOR MEMBER, IEEE, AND H. DIETER ROMBACH

Abstract--Experience from a dozen years of analyzing software en-
gineering processes and products is summarized as a set of software
engineering and measurement principles that argue for software en-
gineering process models that integrate sound planning and analysis
into the construction process.

In the TAME (Tailoring A Measurement Environment) project at
the University of Maryland we have developed such an improvement-
oriented software engineering process model that uses the goal/ques-
tion/metric paradigm to integrate the constructive andanalytic aspects
of software development. The model provides a mechanism for for-
malizing the characterization and planning tasks, controlling and im-
proving projects based on quantitative analysis, learning in a deeper
and more systematic way about the software process and product, and
feeding the appropriate experience back into the current and future
projects.

The TAME system is an instantiation of the TAME software engi-
neering process model as an 1SEE (Integrated Software Engineering
Envi(onment). The first in a series of TAME system prototypes has
been developed. An assessment of experience with this firstlimited pro-
totype is presented including a reassessment of its initial architecture.
The long-term goal of this building effort is to develop a better under-
standing of appropriate 1SEE architectures that optimally support the
improvement-oriented TAME software engineering process model.

Index Terms--Characterization, execution, experience, feedback,
formalizing, goal/question/metric paradigm, Improvement paradigm,
integrated software engineering environments, integration of construc-
tion andanalysis, learning, measurement, planning, quantitative anal-
ysis, software engineering process models, tailoring, TAME project,
TAME system.

I. INTRODUCTION

XPERIENCE from a dozen years of analyzing soft-
ware engineering processes and products is summa-

rized as a set of ten software engineering and fourteen

measurement principles. These principles imply the need
for software engineering process models that integrate
sound planning and analysis into the construction process.

Software processes based upon such improvement-ori-
ented software engineering process models need to be tai-

lorable and tractable. The tailorability of a process is the

characteristic that allows it to be altered or adapted to suit
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b.yNASA underGrantNSG-5123. the Air Force O1_c¢of Scientific Re-
searchunderGrantF49620-87-0130, and the Office of NavalResearchun-
do4"GrantNOOOI4-85-K-0633to the University of Maryland.Computer
time was providedin pan throughthe facilities of the Computer Science
Center of theUniversity of Maryland.

The authors are with the Departmentof Computer Science and the In-
stitutefor AdvancedComputer Studies. University of Maryland,College
Park,MD 20742.

IEEE Log Number8820962.

a set of special needs or purposes [64]. The software en-

gineering process requires tailorability because the over-

all project execution model (life cycle model), methods
and tools need to be altered or adapted for the specific

project environment and the overall organization. The

tractability of a process is the characteristic that allows it

to be easily planned, taught, managed, executed, or con-

trolled [64]. Each software engineering process requires

tractability because it needs to be planned, the various

planned activities of the process need to be communicated

to the entire project personnel, and the process needs to

be managed, executed, and controlled according to these

plans. Sound tailoring and tracking require top-down
measurement (measurement based upon operationally de-

fined goals). The goal of a software engineering environ-

ment (SEE) should be to support such tailorable and tract-

able software engineering process models by automating

as much of them as possible.
In the TAME (Tailoring A Measurement Environment)

project at the University of Maryland we have developed

an improvement-oriented software engineering process

model. The TAME system is an instantiation of this TAME

software engineering process model as an ISEE (Inte-
grated SEE).

It seems appropriate at this point to clarify some of the
important terms that will be used in this paper. The term

engineering comprises both development and mainte-
nance. A software engineering project is embedded in

some project environment (characterized by personnel,
type of application, etc.) and within some organization

(e.g., NASA, IBM). Software engineering within such a
project environment or organization is conducted accord-
ing to an overall software engineering process model (one
of which will be introduced in Section II-B-3). Each in-

dividual software project in the context of such a software

engineering process model is exeucted according to some

execution model (e.g., waterfall model [28], [58], itera-

tive enhancement model [24], spiral model [30]) supple-

mented by techniques (methods, tools). Each specific in-

stance of (a part of) an execution model together with its

supplementing methods and tools is referred to as execu-

tion process (including the.e,construction as well as the
analysis process). In addition, the term process is fre-

quently used as a generic term for various kinds of activ-
ities. We distinguish between constructive and analytic

methods and tools. Whereas constructive methods and

tools are concerned with building products, analytic

0098-5589/8810600-0758501.00 © 1988 IEEE
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method and tools are concerned with analyzing the con-

structive process and the resulting products. The body of

experience accumulated within a project environment or

organization is referred to as experience base. There exist

at least three levels of formalism of such experience bases:

database (data being individual products or processes),
.... t-- .

mformatton base (mformatmn being data vtewed through

some superimposed structure), and knowledge base

(knowledge implying the ability to derive new insights via

deduction rules). The project personnel are categorized as

either engineers (e.g., designers, coders, testers) or man-

agers. -

This paper is structured into a presentation and discus-

sion of the improvement-oriented software engineering

process model underlying the TAME project (Section IlL

its automated support by the TAME system (Section III),

and the first TAME system prototype (Section IV). In the

first part of this paper we list the empirically derived les-

sons learned (Section II-A) in the form of software engi-

neering principles (Section II-A-I), measurement princi-

ples (Section II-A-2), and motivate the TAME project by

stating several implications derived from those principles

(Section II-A-3). The TAME project (Section II-B) is pre-

sented in terms of the improvement paradigm (Section

II-B-1), the goal/question/metric paradigm as a mecha-

nism for formalizing the improvement paradigm (Section

II-B-2), and the TAME project model as an instantiation

of both paradigms (Section II-B-3). In the second part of

thifp/iper we int_e-TAME system _is aSria-pp-roa-c_

to automatically supporting the TAME software engi-

neering process model (Section llI). The TAME system
is presented in terms of its requirements (Section III-A)

and architecture (Section HI-B). In the third part otVf_s

paper, we introduce the first TAME prototype (Section

IV) with respect to its functionality and our first experi-
ences with it.

II. SOFTWARE ENGINEERING PROCESS

Our experience from measuring and evaluating soft-

ware engineering processes and products in a variety of

project environments has been summarized in the form of

lessons learned (Section II-A). Based upon this experi-

ence the TAME project has produced an improvement-

oriented process model (Section II-B).

A_ _Eessbns Eearned frbm lrasi Experience

We have formulated our experience as a set of software

engineering principles (Section II-A-I) and measurement

principles (Section II-A-2). Based upon these principles a

number of implications for sound software engineering

process models have been derived (Section II-A-3).

1) Software Engineering Principles: The first five

software engineering principles address the nee_ for de-

veloping quality a priori by introducing engineering dis-

cipline into the field of software engineering:

(PI) We need to clearly distinguish between the role of

constructive and analytic activities. Only improved con-

struction processes will result in higher quality software.

Quality cannot be tested or inspected into software. An-

759

alytic processes (e.g., quality assurance) cannot serve as

a substitute for constructive processes but will provide

control of the constructive processes [27], [37], [61].

(P2) We need to formalize the planning of the con-

struction process in order to develop quality a priori [3],

[16], [19], [25]. Without such plans the trial and error

approach can hardly be avoided.

(P3) We need to formalize the analysis and improve-

ment of con%truction processes and products in order to
guarantee an organized approach to software engineering
[31, [251.

(P4) Engineering methods require analysis to deter-

mine whether they are being performed appropriately, if

at all. This is especially important because most of these

methods are heuristic rather than formal [421, [491. [661.

(P5) Software engineers and managers n_ed real-time

feedback in order to improve the construction processes

and products of the ongoing project. The organization

needs post-mortem feedback in order to imp-rove the con-

struction processes and products for future projects [66].

The remaining five software engineering principles ad_

dress the need for tailoring of planning and analysis pro-

cesses due to changing needs form project to project and
environment to environment;

(P6) All project environments and products are differ-

ent in some way [21, [66]. These differences must be made

explicit and taken into account in the software execution

processes and in the product quality goals [31, [161, [19],

[251.
(P7) There are many execution models for software en-

gineering. Each execution model needs to be tailored to

the organization and project needs and characteristics [21,

(P8) We need to formalize the tailoring of processes

toward the quality and productivity goals of the project

and the characteristics of the project environment and the
organization [16]. It is not easy to apply abstractly defined

methods to specific environments.

(P9) This need for tailoring does not mean starting from

scratch each time. We need to reuse experience, but only:

after tailrrifig _t t0the projeci [ i l, [2][ i6h 17ii [i 8ii [321.

(PlO) Because of the constant need for tailoring, man-

agement control is crucial and must be flexible. Manage-

ment needs must be supported in this software engineer-

ing procesL

A more detailed discussion of these software engineer-

ing principles is contained in [17[.

2) Software Measureme,t Principles. The first four

measurement principles address the purpose of the mea-

surement process, i.e., why should we measure, what

should we measure, for whom should we measure:

(MI) Measurement is an ideal mechanism tbr charac-

terizing, evaluating, predicting, and providing motivation

for the various aspects of software construction processes

and products [3], [41, [9], [161, [21], [251, [481, [561.
[57]. It is a common mechanism forrelating these multi-

ple aspects.

(M2) Measurements must be taken on both the soft-

5207

3-22

w

m

m

I

g

I

_-i

m

=

m

B

I

m

=_

J

u

m
i

H

M



w

m

760 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 14, NO 6, JUNE 198g

ware processes and the various software products [ 11, [5],

[14], [29], [38], [40], [42]-[44], [47], [541-[56], [65],

[66]. Improving a product requires understanding both the

product and its construction processes.

(M3) There are a variety of uses for measurement. The

purpose of measurement should be clearly stated. We can
use measurement to examine coy effectiveness, reliabil-

ity, correctness, maintainability, efficiency, user friendli-

ness, etc. [8]-[10]. [13], [14], [16]. [20], [23], [25], [41],

1531, [571, [61].
(M4) Measurement needs to be viewed from the appro-

priate perspective. The corporation, the manager, the de-

veloper, the customer's organization and the use_" each

view the product and the process from different perspec-

tives. Thus they may want to know different things about

the project and to different levels of detail [3], 116], [19]_,
[25], I66].

The remaining ten measuremeht principles address met-

rics and the overall measurement process. The first two

principles address characteristics of metrics (i.e., what

kinds of metrics, how many are needed), while the latter

eight address characteristics of the measurement process
(i.e., what should the measurement process look like, how

do we support characterization, planning, construction,

and learning and feedback):
(M5) Subjective as well as objective metrics are re-

quired. Many process, product and environment aspects

can be characterized by objective metrics (e.g., product

complexity, number of defects or effort related to pro-

cesses). Other aspects cannot be characterized objectively

yet (e.g., experience of personnel, type of application,

understandability of processes and products); but they can

at least be categorized on a quantitative (nominal) scale

to a reasonable degree of accuracy [4], [5], [16], [48],

[561.

(M6) Most aspects of software processes and products

are too complicated to be captured by a single metric. For

both definition and interpretation purposes, a set of met-

tics (a metric vector) that frame the purpose for measure-

ment needs to be defined [9].

(M7) The development and maintenance environments

must be prepared for measurement and analysis. Planning

is required and needs to be carefully integrated into the

overall software engineering process model. This plan-

ning process must take into account the experimental de-
sign appropriate for the situation [3], [14], [19]. [22],
[66].

(M8) We cannot just use models and metrics from other
environments as defined. Because of the differences

among execution models (principle P7), the models and

metrics must be tailored for the environment in which they
will be applied and checked for validity in that environ-

ment [2], [6]-[8], [121, [23], [31], [40], [47], [501, [51],
[62].

(M9) The measurement process must be top-down

rather than bottom-up in order to define a set of opera-

tional goals, specify the appropriate metrics, permit valid

contextual interpretation and analysis, and provide feed-
back for tailorability and tractability [3], [16], [19], [25].

(MIO) For each environment there exists a character-

istic set of metrics that provides the needed information

for definition and interpretation purposes [21].

(MI 1) Multiple mechanisms are needed for data col-
lection and validation. The nature of the data to be col-

lected (principle M5) determines the appropriate mecha-

nisms [41, [25], [48], e.g., manually via forms or

interviews, or automatically via analyzers.

(M12) In order to evaluate and compare projects and

to develop models we need a historical experience base.

This experience base should characterize the local envi-

ronment [4], [13], [251, [34], [44], [48].

(M 13) Metrics must be associated with interpretations,

but these interpretations must be given in context [3], [16],
II91, [251, [34], [561.

(MI4) The experience base should evolve from a da-

tabase into a knowledge base (supported by an expert sys-

tem) to formalize the reuse of experience [11], [14].

A more detailed discussion of these measurement prin-

ciples is contained in [17].

3) Implications: Clearly this set of principles is not

complete. However, these principles provide empirically

derived insight into the limitations of traditional process

models. We will give some of the implications of these

principles with respect to the components that need to be

included in software process models, essential character-

istics of these components, the interaction of these com-

ponents, and the needed automated support. Although

there is a relationship between almost all principles and

the derived implications, we have referenced for each im-

plication only those principles that are related most di-

rectly.

Based upon our set of principles it is clear that we need

to better understand the software construction process and

product ('e.g., principles PI, P4, P6, M2, M5, M6, MS,

M9, M10, MI2). Such an understanding will allow us to

plan what we need to do and improve over our current

practices (e.g., principles P1, P2, P3, P7, P8, M3, M4,

M7, M9, MI4). To make those plans operational, we

need to specify how we are going to affect the construc-

tion processes and their analysis ('e.g., principles PI, P2,

P3, P4, P7, PS, M7, M8, M9, MI4). The execution of

these prescribed plans involves the construction of prod-
ucts and the analysis of the constructive processes and

resulting products (e.g., principles P1, PT).

All these implications need to be integrated in such a

way that they allow for sound learning and feedback so

that we can improve the software execution processes and

products (e.g., principles.,]_l, P3, P4, P5, P9, PI0, M3,

M4, M9, MI2, MI3, MI4"). This interaction requires the

integration of the constructive and analytic aspects of the

software engineering process model (e.g., principles P2,

M7, M9).

The compofients and their interactions need to be for-
malized so they can be supported properly by an ISEE
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(e.g., principles P2, P3, PS, P9, M9). This formalization
must include a structuring of the body of experience so

that characterization, planning, learning, feedback, and

improvement can take place (e.g., principles P2, P3, P8,
!'9, M9). An ideal mechanism for supporting all of these

components and their interactions is quantitative analysis

(e.g., principles P3, P4, MI, M2, M5, M6, MS, M9,
MI0, MII, MI3). "-

B. A Process Model: The TAME Project

The TAME (Tailoring A Measurement Environment)
project at the University of Maryland has produced a soft-
ware engineering process model (Section II-B-3) based

upon our empirically derived lessons learned. This soft-

ware engineering process model is based upon the im-

provement (Section II-B-1) and goal/question/metric par-
adigms (Section II-B-2).

1) Improvement Paradigm: The improvement para-
digm for software engineering processes reflects the im-
plications stated in Section II-A-3. It consists of six major
steps [3]:

(I i) Characterize the current project environment.

(I2) Set up goals and refine them into quantifiable ques-
tions and. metrics for successful prdject performance and
improvement over previous project performances.

(I3) Choose the appropriate software project execution
model for this project and supporting methods and tools.

(I4) Execute the chosen processes and construct the

products, collect the prescribed data, validate it, and pro-
vide feedback in real-time.

(I5) Analyze the data to evaluate the current practices,
determine problems, record the findings, and make rec-

ommendations for improvement.
(I6) Proceed to Step l l to start the next project, armed

with the experience gained from this and previous proj-
ects.

This paradigm is aimed at providing a basis for corpo-

rate learning and improvement. Improvement is only pos-
sible if we a) understand what the current status of our

environment is (step IlL b) state precise improvement

goals for the particular project and quantify them for the

purpose of control (step I2), c) choose the appropriate

process execution models, methods, and tools in order to

achieve these improvement goals (step I3), execute and

monitor the project performance thoroughly (step [4), and

assess it (step 15). Based upon the assessment results we

can provide feedback into the ongoing project or into the

planning step of future projects (steps I5 and I6).
2) Goal�Question/Metric Paradigm: The goal/ques-

tion/metric (GQM) paradigm is intended as a mechanism
for formalizing the characterization, planning, construc-

tion, analysis, learning and feedback tasks. It represents

a systematic approach for setting project goals (tailored
to the specific needs of an organization) and defining them

in an operational and tractable way. Goals are refined into

a set of quantifiable questions that specify metrics. This

paradigm also supports the analysis and integration of
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metrics in the context of the questions and the original
goal. Feedback and learning are then performed in the

context of the GQM paradigm.

The process of setting goals and refining them into

quantifiable questions is complex and requires experi-
ence. In order to support this process, a set of templates

for setting goals, and a set of guidelines for deriving q_es-

tions and metrics has been developed. These templates

and guidelines reflect our experience from having applied

the GQM paradigm in a variety of environments (e.g.,

NASA [4], [17], [48], IBM [60], AT&T, Burroughs [56],
and Motorola). We received additional feedback from

Hewlett Packard where the GQM paradigm has been used
without Our direct assistance-J39], it n_/eds to be Stressed

that we do not claim that these templates and guidelines
are complete; they will most likely change over time as

our experience grows. Goals are defined in terms of pur-

pose, perspective and environment. Different sets of
guidelines exist for defining product-related and process-

related questions. Product-related questions are formu-
lated for the purpose of defining the product (e.g., phys-

ical attributes, cost, changes, and defects, context), de-
fining the quality perspective of interest (e.g., reliability,

user friendliness), and providing feedback from the par-

ticular quality perspective. Process-related questions are

formulated for the pU-rlx,ge-ofdeflning]He process (quality

of use, domain of Use), defining The quality perspective

of interest (e.g., reduction of defects, cost effectiveness
of use), and providing feedback from the particular qual-
ity perspective. _ : ...... : ..... _ ....

• Templates/Guidelines for Goal Definition:
Purpose: To (characterize, evaluate, predict, moti-

vate, etc.) the (process, product, model, metric, etc.) in
order to (uncle/stand, assess, manage, "engineer, learn,

improve, etc.) it.
Example: To evaluate the system testing methodology

in order to improve it. -

Perspective: Examine the (cost, effectiveness, cor-

re'ctness, defects, changes, product metrics, reliability,

etc.) from the point of view of the (developer, manager,

customer, corporate perspective, etc.)
Example- Examine the effectiveness from the devel-

oper's point of view.
Environment: The environment consists of the fol-

lowing: process factors, people factors, problem factors,
methods, tools, constraints, etc.

Example: The product is an operating system that must
fit on a PC, etc.

• Guidelines for Product-Related Questions:

For each product under study there are three major

subgoals that need to be addressed: 1) definition of the

product, 2) definition of the quality perspectives of inter-

est, and 3) feedback related to the quality perspectives of
interest.

Defini-tio, @the product includes questions related to

physical attributes (a quantitative characterization of the

product in terms of physical attributes such as size, corn-
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plexity, etc.), cost (a quantitative characterization of the

resources expended related to this product in terms of ef-

fort. computer time, etc.), changes arid defects (a quan-
titative characterization of the errors, faults, failures, ad-

aptations, and enhancements related to this product), and

context (a quantitative characterization of the customer

community using this product and their operational pro-

files).

Quality perspectives of interest includes, for each

quality perspective of interest (e.g., reliability_ user friend-

liness), questions related to the major model(s) used (a

quantitative specification of the quality perspective of in-

terest), the validity of the model for the particular envi-

ronment (an analysis of the appropriateness of the model

for the particular project environment), the validity of the

data collected (an analysis of the quality of data), the

modM effectiveness (a quantitative characterization of the
quality of the results produced according to this model),

and a substantiation of the model (a discussion of whether

the results are reasonable from various perspectives).

Feedback includes questions related to improving the

product relative to the quality perspective of interest (a

quantitative characterization of the product quality, major

problems regarding the quality perspective of interest, and

suggestions for improvement during the ongoing project

as well as during future projects).
• Guidelines for Process-Related Questions

For each process under study, there are three major

subgoals that need to be addressed: 1) definition of the

process, 2) definition of the quality perspectives of inter-

est, and 3) feedback from using this process relative to

the quality perspective of interest.
Definition of the process includes questions related to

the quality of use (a quantitat.ive characterization of the

process and an assessment of how well it is performed),

and the domain of use (a quantitative characterization of

the object to which the process is applied and an analysis

of the process performer's knowledge concering this ob-

ject).
Quality perspectives of interest follows a pattern sim-

ilar to the corresponding product-oriented subgoal includ-

ing, for each quality perspective of interest (e.g., reduc-

tion of defects, cost effectiveness), questions related to

the major model(s) used, and validity of the model for the

particular environment, the validity of the data collected,
the model effectiveness and the substantiation of the

model).

Feedback follows a pattern similar to the correspond-

ing product-oriented subgoal.
• Guidelines for Metrics, Data Collection, and

Interpretation:
-The choice of metrics is determined by the quantifiable

questions. The guidelines for questions acknowledge the

need for generally more than one metric (principle M6),

for objective and subjective metrics (principle M5), and

for associating interpretations with metrics (principle

MI3). The actual GQM models generated from these tern-

plates and guidelines will differ from project to project

and organization to organization (principle M6). This re-

flects their being tailored for the different needs in differ-

ent projects and organizations (principle M4). Depending

on the type of each metric, we choose the appropriate me-
chansims for data collection and validation (principle

M11). As goals, questions and metrics provide for tract-

ability of the (top-down) definitional quantification pro-

cess, they also provide for the interpretation context (bot-

tom-up). This integration of definition with interpretation
allows for the interpretation process to be tailored to the

specific needs of an environment (principle M8).

3) Improvement-Oriented Process Model: The

TAME software engineering process model is an instan-

tiation of the improvement paradigm. The GQM para-

digm provides the necessary integration of the individual

components of this model. The TAME software engi-

neering process model explicitly includes components for

(C 1) the characterization of the current status of a project

environment, (C2) the planning for improvement inte-

grated into the execution of projects, (C3) the execution

of the construction and analysis of projects according to

the project plans, and (C4) the recording of experience

into an experience base. The learning and feedback mech-

anism (C5) is distributed throughout the model within and

across the components as information flows frOm one

component to another. Each of these tasks must be dealt

with from a constructive and analytic perspective. Fig. 1

contains a graphical representation of the improvement-

oriented TAME process model. The relationships (arcs)

among process model components in Fig. i represent in-

formation flow.

(C1) Characterization of the current environment is re-

quired to understand the various factors that influence the

current project environment. This task is important in or-

der to define a starting point for improverrient. Without

knowing where we are, we will not be able to judge

whether we are improving in our present project. We dis-

tinguish between the constructive and analytic aspects of
the characterization task to emphasize that we not only

state the environmental factors but analyze them to the de-

gree possible based upon data and other forms of infor-

mation from prior projects. This characterization task
needs to be formalized.

(C2) Planning is required to understand the project

goals, execution needs, and project focus for learning and
feedback. This task is essential for disciplined software

project execution (i.e., executing projects according to
precise specifications of processes and products). It pro-

vides the basis for improvement relative to the current sta-

tus determined during cha._.,acterization. In the planning

task, we distingtlish betwee'h the constructive and analytic

as well as the "what" and '!how" aspects of planning.

Based upon the GQM paradigm all these aspects are highly

interdependent and performed as a single task. The de-

velopment of quantitatively analyzable goals is an itera-

tive process. However, we formulate the four planning as-

5207

3-25



ORIGINAL PAGE IS

OF POOR QUALITY

BASIL! AND ROMBACH: THE TAME PROJECT 763

¢oD-

rttue-

tire

lytl,=

I cl_r_c_rIae I
eavtro_elt

C2=

lumin

(;2.1: _hEt C2,2: Bow

+, c;=.=.t

m eoaaltructlon F

Le.61¥_

: cs.=._

CS_

l=lcutl, I

Q$.I

eoctetr tier

CII.=

l+: .......1
Fig. i. The imprnvcment-orienled TAME _,)l'tware process rn+_ieL

pects as four separate components to emphasize the

differences between creating plans for development and

making those plans analyzable, as well as between stating

what it is you want to accomplish and stating how you

plan to tailor the processes and metrics to do it.

(C2. I) "'What" Planning deals with choosing, as-

signing priorities, and operationally defining, to the de-

gree possible, the project goals from the constructive and

analytic perspectives, The actual goal setting is an instan-

tiation of the front-end of the GQM paradigm (th_ tem-

plates/guidelines for goal definition), The constructive

perspective addresses the definition of project goals such

as on-time delivery, the appropriate functionality to sat-

isfy the user, and the analysis of the execution processes

we are applying. Some of these goals might be stated as

improvement goals over the current state-of-the-practice

as characterized in component C I. These goals should be

prioritized and operationally defined to the extent possible

without having chosen the particular construction models,

methods and tools, yet. The analytic perspective addresses

analysis procedures for monitoring and controlling
whether the goals are met. This analytic goal pers_ctlve

should prescribe the necessary learning and feedback

paths. It should be operationally defined to the extent al-

lowed by the degree of precision of the constructive goal

perspective.

(C2.2) "How" Planning is based upon the results

from the "what" planning !providing ["or the purpose and

perspective of a goal definition according to the GQM

paradigm front-end) and the characterization of the envi-

ronment (providing for the environment part. of a goal def-
inition according to the GQM paradigm front-end). The

"how" planning involves the choice of an appropriately
tailored execution model, methods and tools that permit

the building of the system in such a way that we can ana-

lyze whether we are achieving our stated goals. The par-

ticular choice of construction processes, methods and tools

(component C2.2.1) goes hand in hand with fine-tuning
the analysis procedures derived durln-g the analytic per-

spective of the "what" planning (component C2.2.2).

(C2,2. I) Planning for construction includes choos-
ing the appropriate execution model, methods and tools

to fulfill the project goals.-It should be clear that effective

planning for construction depends on well-defined project

goals from both the constructive and analytic perspective
(component C2.17.

(C2222):Planning for analysis addresses the fine-

tuning of the operational definition of the analytic goal
perspective (derived as part of component C2.1) towards

the specific choices made during planning for construc-
tion (C2.2.1). The actual planning for analysis is an in-

stantiation of the back-end of the GQM paradigm; details

need to be filled in (e.g., quantifiable questions, metrics)

based upon the specific methods and tools chosen.

(C3) Executirn must integrate the construction (com-

ponent C3, t) with the analysis (component C3,2), Anal-

ysis (including measurement) cannot be an add-on but

must be part of the execution process and drive the con-

struction. The+_-x-ec-rtir_pla_+=derived during the plan-

ning task are supposed to provide for the required inte-
gration of construction and analysis.

(C4) The E'_,pr?ience Base includes the entire body of

experience that_actb,'ely+available to the project. We can
tlcharacterize this experience accordin_ to the following di-

mensions: a) the degree of precision!detail, and b) the de-

gree to which it is tailored to meet the specific needs of

the project (context). The precision/detail dimension in-

volves the level of detail of the experimental design and

the level and quality of data collected. On one end of the

spectrum we have detailed objective quantitativedatathat

allows us to build mathematically tractable models. On

the other end of the spectrum we have interviews and

qualitative information that provide guidelines and "les-
sons learned documents", and permit the better formu-
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lation of goals and questions. The level of precision and
detail affects our level of confidence in the results of the

expenment as well as the cost of the data collection pro-

cess. Clearly priorities play an important role here. The
context dimension involves whether the focus is to learn

about the specific project, projects within a specific ap-

plication domain or general truths about the software pro-

cess or product (requires the incorporation of formalized

experience from prior projects into the experience base).
Movement across the context dimension assumes an abil-

ity to generalize experience to a broader context than the

one studied, or to tailor experience to a specific project.

The better this experience is packaged, the better our un-

derstanding of the environment. Maintaining a body of

experience acquired during a number of projects is one of

the prerequisites for learning and feedback across envi-
ronments.

(C5) Learning and Feedback are integrated into the

TAME process model in various ways. They are based

upon the experimental model for learning consisting of a
set of steps, starting with focused objectives, which are

turned into specific hypotheses, followed by running ex-

periments to validate the hypotheses in the appropriate en-

vironment. The model is iterative; as we learn from ex-

perimentation, we are better able to state our focused

objectives and we change and refine our hypotheses.
This model of learning is incorporated into the GQM

paradigm where the focused objectives are expressed as

goals, the hypotheses are expressed as questions written

to the degree of formalism required, and the experimental

environment is the project, a set of projects in the same

domain, or a corporation representing a general environ-
ment. Clearly the GQM paradigm is also iterative.

The feedback process helps generate the goals to influ-

ence one or more of the components in the process model,

e.g., the characterization of the environment, or the anal-

ysis of the construction processes or products. The level

of confidence we have in feeding back the experience to

a project or a corporate environment depends upon the

precision/detail level of the experience base (component

C4) and the generality of the experimental environment
in which it was gathered.

The learning and feedback process appears in the model

as the integration of all the components and their inter-

actions as they are driven by the improvement and GQM

paradigms. The feedback process can be channeled to the

various components of the current project and to the cor-

porate experience base for use in future projects.

Most traditional software engineering process models

address only a subset of the individual components of this

" model; in many cases they cover just the constructive as-

pects of characterization (component CI), "how" plan-

ning (component C2.2.1), and execution (component

C3.1). More recently developed software engineering
process models address the constructive aspect of execu-

tion (component C3.1) in more sophisticated ways (e.g.,

new process models [24],[30], [49], comhine various pro-

cess dimensions such as technical, managerial, contrac-

tual [36], or provide more flexibility as far as the use of

methods and tools is concerned, for example via the au-

tomated generation of tools [45], [63]), or they add meth-

ods and tools for choosing the analytical processes, meth-

ods, and tools (component C3.2.2) as well as actually

performing analysis (component C3.2) [52], [59]. How-

ever, all these process models have in common the lack

of completely integrating all their individual components

in a systematic way that would permit sound learning and

feedback for the purpose of project control and improve-

ment of corporate experience.

III. AUTOMATED SUPPORT THROUGH ISEEs: THE

TAME SYSTEM

The goal of an Integrated Software Engineering Envi-

ronment (ISEE) is to effectively support the improvement-

oriented software engineering process model described in

Section II-B-3: An ISEE must support all the model com-

ponents (characterization, planning, execution, and the ex-

perience base), all the local interactions between model

components, the integration, and formalization of the

GQM paradigm, and the necessary transitions between the

context and precision/detail dimension boundaries in the

experience base. Supporting the transitions along the ex-

perience base dimensions is needed in order to allow for

sound learning and feedback as outlined in Section II-B-3

(component C5).

The TAME system will automate as many of the com-

ponents, interactions between components and supporting

mechanisms of the TAME process model as possible. The

TAME system development activities will concentrate on

all but the construction component (component C3.1) with
the eventual goal of interfacing with constructive SEEs.

In this section we present the requirements and the initial

architecture for the TAME system.

A. Requirements

The requirements for the TAME system can be derived

from Section II-B-3 in a natural way. These requirements
can be divided into external requirements (defined by and

of obvious interest to the TAME system user) and internal
requirements (defined by the TAME design team and re-

quired to support the external requirements properly).

The first five (external) requirements include support

for the characterization and planning components of the

TAME model by automating an instantiation of the GQM
paradigm, for the analysis component by automating data

collection, data validation and analysis, and the learning

and feedback component by automating interpretation and

organizational learning. We will list for each external

TAME system require.Blent the TAME process model

components of Section-l'l-B-3 from which it has been de-
rived.

External TAME requirements."

(RI) A mechanism for defining the constructive and
analytic aspects of project goals in an operational and
quantifiable way (derived from components C l, C2.1,

C2.2.2, C3.2).

We use the GQM paradigm and its templates for defin-
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ing goals operationally and refining them into quantifiable

questions and metrics. The selection of the appropriate

GQM model and its tailoring needs to be supported, The
user will either select an existing model or generate a new

one. A new model can be generated from scratch or by

reusing pieces of existing models. The degree to which

the selection, generation, a,_ reuse tasks can be sup-

ported automatically depends largely on the degree to

which the GQM paradigm and its templates can be for-

malized. The user needs to be supported in defining his/

her specific goals according to the goal definition tem-

plate. Based on each goal defi.nition, the TAME system

will search for. a model in the experience base. If no ap-

propriate model exists, the user will be guided in devel-

oping one. Based on the tractability of goals into subgoals

and questions the TAME system will identify reusable
pieces of existing models and compose as much of an ini-

tial model as possible. This initial model will be com-

pleted with user interaction. For example, if a user wants

to develop a model for assessing a system test method

used in a particular environment, the system might com-

pose an initial model by reusing pieces from a model as-

sessing a different test method in the same environment,

and from a model for assessing the same system test

method in a different environment. A complete GQM

model includes rules for interpretation of metrics" and

guidelines for collecting the prescribed data. The TAME
system will automatically generate as much of this infor-

mation as possible.
(R2) The automatic and manual collection of data and

the validation of manually collected data (derived from

component C3.2).

The collection of all product-related data (e.g., lines of
code, complexity) and certain process-related data (e.g.,

number of compiler runs, number of test runs) will be

completely automated. Automation requires an i,tefface

with construction-oriented SEEs. The collection of many

process-related data (e.g., effort, changes-) and subjective

data (e.g., experience of personnel, characteristics of
methods used) .cannot be automated. The schedule ac-

cording to which measurement tools are run needs to be

defined as part of the planning activity. It is possible to

collect data whenever they are needed, periodically (e.g.,

always at a particular time of the day), or whenever

changes of products occur (e.g., whenever a new product

version is entered into the experience base all the related

metrics are recomputed). All manually collected data need

to be validated. Validating whether data are within their

defined range, whether all-the prescribed data are col-

lected, and whether certain integrity rules among data are
maintained will be automated. Some of the measurement

tools will be developed as part of the TAME system de-

velopment project, others will be imported. The need for

importing measurement tools will require an effective in-

tereonnection mechanism (probably an interconnection

language) for integrating tools developed in different lan-

guages.

(R3) A mechanism for controlling measurement and

analysis (derived from component C3.2).

765

A GQM model is used to specify and control the exe-

cution of a particular analysis and feedback sesSiOn. Ac-

cording to each GQM model, the TAME system must

trigger the execution of measurement tools for data col-

lection, the computation of all metrics and distributions

prescribed, and the application of statistical procedures.

If certain metrics or distributions cannot be computed due

to the lack of data or measurement tools, the TAME sys-
tem must inform the user.

(R4) A mechanism for interpreting analysis results in a

context and providing feedback for the improvement of

the execution model, methods and tools (derived from

components C3.2, C.5).

We use a GQM model to define the rules and context

for interpretation of data and for feedback in order to re-

fine and improve execution models, methods and tools.

The degree to which interpretation can be supported de-

pends on our understanding of the software process and

product, and the degree to Which we express this under-

standing as formal rules. Today, interpretation rules exist

only for some of the aspects of interest and are only valid

within a particular project environment or organization.

However. interpretation guided by GQM models will en-

able an evolutionary learning process resulting in better

rules for interpretation in the future. The interpretation

process can be much more effective provided historical

experience is available allowing for the generation of his-
torical baselines. In this case we can at least identify

whether observations made during the current project de-

viate from past experience or not.

(RS) A mechanism for learning in an organization (de-

rived from components C4, C5).

The learning process is supported by iterating the se-

quence of defining focused goals, refining teem into hy-

potheses, and running experiments. These experiments

can range from completely controlled experiments to reg-

ular project executions. In each case we apply measure-

ment and analysis procedures to project claSses of inter-

est. For each of those classes, a historical experience base

needs to be established concerning the effectiveness of the

candidate execution models, methods and tools. Feed-

back from ongoing projects of the same class, the corre-
sponding execution models, methods and tools can be re-

fined and improved with respect to context and precision/

detail sd that we increase our potential to improve future

projects, _ ' :

The remaining seven (internal) requirements deal with

user interface management, report generation, experience
base, security and access control, configuration manage-

ment control, SEE interface and distribution issues. All

these issues are important in order to support planning,

construction, learning and feedback effectively.

Internal TAME require_: :

(R6) A homogeneous user interface.

We distinguish between the physical and logical user
interface. The physical user interface provides a menu or
command driven interface between the user and the

TAME system. Graphics and window meehansims will be
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incorporated whenever useful and possible. The logical
user interface reflects the user's view of measurement and

analysis. Users will not be allowed to directly access data

or run measurement tools. The only way of working with

the TAME system is via a GQM model. TAME will en-

force this top-down approach to measurement via its log-
ical user interface. The acceptance of this kind of user

interface will depend on the effectiveness and ease with

which it can be used. Homogeneity is important for both

the physical and logical user interface.

(R7) An effective mechanism for presenting data, in-
formation, and knowledge, "

The presentation of analysis (measurement and inter-

pretalion) results via terminal or printer/plotter needs to

be supported. Reports need to be generated for different

purposes. Project managers will be interested in periodi-

cal reports reflecting the current status of their project.

High level managers will be interested in reports indicat-

ing quality and productivity trends of the organization.

The specific interest of each person needs to be defined

by one or more GQM models upon which automatic re-

port generation can be based. A laser printer and multi-

color plotter would allow the appropriate documentation

of tables, histograms, and other kinds of textual and

graphical representations.

project organization. It is part of planning a project to
decide who needs to have access to what functions and

pieces of data, information, and knowledge. In addition

to these security functions, more sophisticated data access

control functions need to be performed. The data access

system is expected to "recommend" to a user who is de-

veloping a GQM model the kinds of data that might be

helpful in answering a particular question and support the

process of choosing among similar data based on avail-

ability or other criteria.

(RI0) Mechanisms allowing for the implementation of

a variety of configuration management and control strat-

egies.

In the context of the TAME system we need to manage

and control three-dimensional configurations. There is

first the traditional product dimension making sure that
the various product and document versions are consistent.

In addition, each product version needs to be consistent

with its related measurement data and the GQM model

that guided those measurements. TAME must ensure that

a user always knows whether data in the experience base

is consistent with the current product version and was col-

lected and interpretated according to a particular model.

The actual configuration management and control strate-

gies will result from the project planning activity.

(R8) The effective storage and retrieval of all relevani (R11) An interface to a construction-oriented SEE.

data, information, and knowledge in an experience base.

All data, information, and knowledge required to sup-

port tailorability and tractability need to be stored in an
experience base. Such an experience base needs to store

GQM models, engineering products and measurement

data. It needs to store data derived from the current proj-

ect as well as historical data from prior projects. The ef-

fectiveness of such an experience base will be improved

for the purpose of learning and feedback if, in addition to

measurement data, interpretations from various analysis
sessions are stored. In the future, the interpretation rules

themselves will become integral part of such an experi-

ence base. The experience base should be implemented as

an abstract data type, accessible through a set of functions

and hiding the actual implementation. This latter require-
ment is especially important due to the fact that current

database technology is not suited to properly support soft-

ware engineering concepts [26]. The implementation of

the experience base as an abstract data type allows us to

use currently available database technology and substitute

more appropriate technology later as it becomes avail-

able. The ideal database would be self-adapting to the

changing needs of a project environment or an organiza-

tion. This would require a specification language for soft-

ware processes and products, and the ability to generate
database schemata fromspecifications written in such a

language [46].

(R9) Mechanisms allowing for the implementation of

a variety of access control and security strategies.

TAME must control the access of users to the TAME

system itself, to various system functions and to the ex-

perience base. These are typical functions of a security

system. The enforced security strategies depend on the

An interface between the TAME system (which auto-

mates all process model components except for the con-

struction component C3.1 of the TAME process model)
and some external SEE (which automates the construction

component) is necessary for three reasons: a) to enable

the TAME system to collect data (e.g., the number of

activations of a compiler, the number of test runs) directly
from the actual construction process, b) to enable the

TAME system to feed analysis results back into the on-

going construction process, and c) to enable the construc-

tion-oriented SEE to store/retrieve products into/from the

experience base of the TAME system. Models for appro-

priate interaction between constructive and analytic pro-

cesses need to be specified. Interfacing with construction-

oriented SEE's poses the problem of efficiently intercon-

necting systems implemented in different languages and

running on different machines (probably with different op-

erating systems).

(RI2) A structure suitable for distribution.

TAME will ultimately run on a distributed system con-

sisting of at least one mainframe computer and a number

of workstations. The mainframes are required to host the

experience base which can be assumed to be very large.

The rest of TAME might be replicated on a number of

workstations. --'1"

B. Architecture

Fig. 2 describes our current view of the TAME archi-
tecture in terms of individual architectural components and

their control flow interrelationships. The first prototype
described in Section IV concentrates on the shaded com-

ponents of Fig. 2.

We group the TAME components into five logical lev-
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Fig, 2. _¢-archiiectural design of the TAME system.

els, the physical user interface, logical user interface,

analysis and feedback, measurement and support level.
Each of these five levels consists of one or more architec-

tural components:

* The Physical User Interface Level consists of one

component:
(A l) The User Interface Management component

implements the physical user interface requirement R6. It

provides a choice of menu or command driven access and

supports a window-oriented screen layout.

• The Logical (GQM-Oriented) User Interface Level

consists of two components:

(A2) The GQM Model Selection component imple-

ments the homogeneity requirement of the logical user in-

terface (R6). It guarantees that no access to the analysis

and feedback, measurement, or support level is possible

without stating the purpose for access in terms of a spe-

cific GQM model.

(A3) The GQM Model Generation component impie-

ments requirement R I regarding the operational and

quantifiable definition of GQM models either from scratch

or by modifying existing models.

• The Analysis and Feedback Level consists of two

components:
(A4.1) This first portion of the Construction Inter-

face component implements the feedback interface be-

tween the TAME system and c0nstruction-oriented SEEs

(pan b) of requirement RI 1).

(A5) The GQM Analysis and Feedback component

implements requirement R3 regarding execution and con-

trol of an analysis and feedback session, interpretation of

the analysis results, and proper feedback. All these activ-

ities are done in the context of a GQM model created by

A3. The GQM-Analysis and-i%edback C0m_fient needs
to have access to the specific authorizations of the user in

order to know which analysis functions this user can per-

form. The GQM Analysis and Feedback component also

provides analysis functions, for example, telling the user

whether certain metrics can be computed based upon the

data currently available in the experience base. This anal-

ysis feature of the subsystem is used for setting and op-

erationally defining g0aIs_ questions, and metrics, as well

as actually performing analyses according to those previ-

ously established goals, questions, and metrics.

* The Measurement Level consists of three compo=
nents: : : _ =_--_::_

(A4.2) This second portion of the Construction In-
terface component implements the measurement interface

between the TAME system find SEE's (part a) of require-
ment Rl 1) and the SEE'S access tothe expenence base of

the TAME system (part c) of requirement RI 1).

(A6) The Measurement Scheduling component im-

plements requirement R2 regard i_ngthe defin!t!on (and ex-
ecution) Of automated data collection strategies. Such

strategies for when to collect data via the measurement

tools may range from collecting data whenever they al'e
needed for an analysis and feedback session (on-line) to

collecting them periodically during low-load times and
storing them in the experience base (off-line).

(A7) The Measurement Tools component imple-
ments requirement R2 regarding automated data collec-

tion. The component needs to be open-ended in order to
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allow the inclusion ot new and different measurement tools

as needed.

• The Support Level consists of three components:

(A8) The Report Generation component implements

requirement R7 regarding the production of all kinds of

reports.

(A9) The Data Entry and Validation component im-

plements requirement R2 regarding the entering of man-

ually collected data and their validation. Validated data

are stored in the experience base component.

(AI0) The Experience Base component implements

requirement R8 regarding the effective storage and re-

trieval of all relevant data, information and knowledge.

This includes all kinds of products, analytical data (e.g.,

measurement data, interpretations/, and analysis plans

(GQM models). This component provides the infrastruc-

ture for the operation of all other components of the

TAME process model and the necessary interactions

among them. The experience base will also provide mech-

anisms supporting the learning and feedback tasks. These

mechanisms include the proper packaging of experience

along the context and precision/detail dimensions.

In addition, there exist two orthogonal components

which for simplicity reasons are not reflected in Fig. 2:

(All) The Data Access Control and Security com-

ponent(s) implement requirement R9. There may exist a

number of subcomponents distributed across the logical

architectural levels. They will validate user access to the

TAME system itself and to various functions at the user

interface level. They will also control access to the proj-
ect experience through both the measurement tools and

the experience base.

(AI2) The Configuration Management and Control

component implements requirement RI0. This compo-

nent can be viewed as part of the interface to the experi-
ence base level. Data can only be entered into or retrieved

from the experience base under configuration manage-
ment control.

IV. FIRST TAME PROTOTYE

The first in a series of prototypes is currently being de-

veloped for supporting measurement in Ada projects [I 5].

This first prototype will implement only a subset of the

requirements stated in Section III-A because of a) yet un-
solved problems that require research, b) solutions that

require more formalization, and c) problems with inte-

grating the individual architectural components into a

consistent whole. Examples of unsolved problems requir-

ing futher research are the appropriate packaging of the

experience along the context and precision/detail dimen-

sion and expert system support for interpretation pur-

poses. Examples of solutions requiring more formaliza-

tion are the GQM templates and the designing of a

software engineering experience base. Examples of inte-

gration problems are the embedding of feedback loops into

the construction process, and the appropriate utilization

of data access control and configuration management con-

trol mechanisms. At this time, the prototype exists in

pieces that have not been fully integrated together as well

as partially implemented pieces.

In this section, we discuss for each of the architectural

components of this TAME prototype as many of the fol-

lowing issues as are applicable: a) the particular approach

chosen for the first prototype, b) experience with this ap-

proach, c) the current and planned status of implementa-

tion (automation) of the initial approach in the first TAME

system prototype, and d) experiences with using the com-

ponent:

(AI) The User Interface Management component is

supposed to provide the physical user interface for ac-

cessing all TAME system functions, with the flexibility

of choosing between menu and command driven modes

and different window layouts. These issues are reasonably

well understood by the SEE community. The first TAME

prototype implementation will be menu-oriented and

based upon the 'X' window mechan.ism. A primitive ver-

sion is currently running. This component is currently not

very high on our priority list. We expect to import a more

sophisticated user interface management component at

some later time or leave it completely to parties interested

in productizing our prototype system.

(A2) The GQM Model Selection component is sup-

posed to force the TAME user to parameterize each

TAME session by first stating the objective of the session

in the form of an already existing GQM model or request-

ing the creation of a new GQM model. The need for this

restriction has been derived from the experience that data

is frequently misused if it is accessible without a clear

goal. The first prototype implementation does not enforce

this requirement strictly. The current character of the first

prototype as a research vehicle demands more flexibility.

There is no question that this component needs to be im-

plemented before the prototype leaves the research envi-
ronment.

(A3) The GQM Model Generation component is sup-

posed to allow the creation of specific GQM models either

from scratch or by modifying existing ones.. We have pro-

vided a set of templates and guidelines (Section II-B-2).

We have been quite successful in the use of the templates

and guidelines for defining goals, questions and metrics.

There are a large number of organizations and environ-

ments in which the model has been applied to specify what

data must be collected to evaluate various aspects of the

process and product, e.g., NASA/GSFC, Burroughs,

AT&T, IBM, Motorola. The application of the GQM par-

adigm at Hewlett Packard has shown that the templates
can be used successfully without our guidance. Several of

these experiences have I_en written up in the literature
[4], [16]. 117], [39], [48]. [56], [60], [61]. We have been

less successful in automating the process so that it ties

into the experience base. As long as we know the goals

and questions a priori, the appropriate data can be iso-

lated and collected based upon the GQM paradigm. The

first TAME prototype implementation is limited to sup-
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port the generation of new models and the modificaton of
existing models using an editor enforcing the templates

and guidelines. We need to further formalize the tem-

plates and guidelines and provide traceability between

goals and questions. Formalization of the templates and

providing traceability is our most important research is-

sue. In the long run we might consider using artificial in-
telligence planning techniques.

(A4.1 and A4.2) The Construction Interface compo-

nent is supposed to support all interactions between a SEE
(which supports the construction component of the TAME

process model) and the TAME system. The model in Fig.

1 implies that interactions in both directions are required.
We have gained experience in manually measuring the

construction process by monitoring the execution of a va-
riety of techniques (e.g., code reading [57], testing [20],
and CLEANROOM development [61]) in various ,envi-

ronments including the SEL [4], [48]. We have also

learned how analysis results can be fed back into the on-
going construction process as weli as into corporate ex-

perience [4], [48]. Architectural component A4.1 is not

part of this first TAME prototype. The first prototype im-

plementation of A4.2 is limited to allowing for the inte-

gration of (or access to) external product libraries. This
minimal interface is needed to have access to the objects

for measurement. No interface for the on-line measure-

ment of ongoing construction processes is provided yet.

(A5) The GQM Analysis and Feedback component is

supposed to perform analysis according to a specific GQM

model. We have gained a lot of experience in evaluating
various kinds of experiments and case studies. We have

been successful in collecting the appropriate data by trac-

ing GQM models top-down. We have be_en less__successful
in providing formal interpretation rules allowing for the

bottom-up interpretation of the collected data. One auto-

mated approach to providing interpretation and feedback

is through expert systems. ARROWSMITH-P provides

interpretations of software project data to managers [44];
it has been tested in the SEL/NASA environment. The

first prototype TAME implementation triggers the collec-

tion of prescribed data (top-down) and presents itto .the
user for interpretation. The user-provided interpretations

will be recorded (via a knowledge acquisition system) in

order to accumulate the necessary knowledge that might

lead us to identifying interpretation rules in the future.

(A6) The Measurement Scheduling component is sup-

posed to allow the TAME user to define a strategy for

actually collecting data by running the measurement tools.

Choosing the most appropriate of many possible strate-

gies (requirements Section Ill-A) might depend on the re-
sponse times expected from the TAME system or the stor-

age capacity of the experience base. Our experience with

this issue is limited because most of our analyses Were

human scheduled as needed [4], [48]. This component will

not be implemented as part of the first prototype. In this

prototype, the TAME user will trigger the execution of

measurement activities explicitly (which can, of course,
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be viewed as a minimal implementation supporting a hu-

man scheduling strategy).

(A7) The Measurement Tools component is supposed

to allow the collection of all kinds of relevant process and

product data. We have been successful in generating tools

to gather data automatically and have learned from the

application of these tools in different environments.

Within NASA, for example, we have used a coverage tool

to analyze the impact of test plans on the consistency of

acceptance test coverage with operational use coverage
[53]. We have used a data bindings tool to analyze the

structural consistency of implemented systems to their de-

sign [41], and studied the relationship between faults and

hierarchical structure as measured by the data bindings

tool [60]. We have been able to characterize classes of

products based upon their syntactic structure [35]. We

have not, however, had much experience in automatically

collecting process data. The first prototype TAME imple+
mentation consists of measurement tools based on the

above three. The first tool captures all kinds of basic Ada
source code information such as lines of code and struc-

tural complexity metrics [35], the second tool computes

Ada data binding metrics, and the third tools captures dy-

namic information such as test coverage metrics [65]. One

lesson learned has been that the development of measure-

ment tools for Ada is very often much more than just a

reimplementation of similar tools for other languages.

This is due to the very different Ada language concepts.

Furthermore, we have recognized the importance of hav-

ing an intermediate representation level allowing for a

language independent representation of software product

and process aspects. The advantage of such an approach

will be that this intermediate representation needs to be

generated ofiiy ogce-per product or process. All the mea-

surement tools can run on this intermediate representa-

tion. This will not only make the actual measurement pro-

cess less time-consuming but provide a basis for reusing
the actual measurement tools to some extent across dif-

ferent language environments. Only the tool generating

the intermediate representation needs to be rebuilt for each

new implementation language or TAME host enviroment.
(AS) The Report Generator Component is supposed to

allow the TAME user to produce a variety of reports. The
statistics and business communities have commonly ac-

cepted approaches for presenting data and interpretations

effectively (e.g., histograms). The first TAME prototype

implementation does not provide a separate experience

base reporting facility. Responsibility for reporting is at-

tached to each individual prototype component; e.g., the

GQM Model Generation component provides reports re-

garding the models, each measurement tool reports on its
own measurement data. +

(A9) The Data Entry and Validation component is sup-

posed to allow the TAME user to enter all kinds of man-

ually collected data and validate them. Because of the

changing needs for measurement, this component must al-

low for the definition of new (or modification of existing)

Ill

J

U

m

W

D

i

m
w

i

E--

W

W

i

5207

3-32
g

J



F

77O IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 14, NO 6, JUNE 1988

data collection forms as well as related validation (integ-
rity) rules. If possible, the experience base should be ca-
pable of adapting to new needs based upon new form def-
initions. We have had lots of experience in designing
forms and validations rules, using them, and learning

about the complicated issues of deriving validation rules
[4], [48]. The first prototype implementation will allow

the TAME user to input off-line collected measurement
data and validate them based upon a fixed and predefined

set of data collection forms [currently in use in NASA's

Software Engineering Laboratory (SEL)]. This compo-

nent is designed but not yet completely implemented. The
practical use of the TAME prototype requires that this

component provide the flexibility for defining and ac--

cepting new form layouts. One research issue is identi-

fying the easiest way to define data collection forms in

terms of a grammar that could be used to generate the

corresponding screen layout and experience base struc-
ture.

(AI0) The Experience Base component allows for ef-
fective storage and retrieval of all relevant experience
ranging from products and process plans (e.g., analysis

plans in the form of GQM models) to measurement data
and interpretations. The experience base needs to mirror

the project environment. Here we are relying on the ex-
perience of several faculty members of the database group

at the University of Maryland. It has been recognized that
current database technology is not sufficient, for several

reasons, to truly mirror the needs of software engineering

projects [26]. The first prototype TAME implementation
is built on top of a relational database management sys-

tem. A first database schema [46] modeling products as

well as measurement data has been implemented. We are

currently adding GQM models to the schema. The expe-
riences with this first prototype show that the amount of
experience stored and its degree of formalism (mostly

data) is not yet sufficient. We need to better package that
data in order to create pieces of information or knowl-

edge. The GQM paradigm provides a specification of what
data needs to be packaged. However, without more for-

mal interpretation rules, the details of packaging cannot

be formalized. In the long run, we might include expert
system technology. We have also recognized the need for
a number of buih-in GQM models that can either be reused

without modification or guide the TAME user during the

process of creating new GQM models.

(AI 1) The Data Access Control and Security compo-

nent is supposed to guarantee that only authorized users

can access the TAME system and that each user can only
access a predefined window of the experience base. The

• first prototype implements this component only as far as

user access to the entire system is concerned.

(AI2) The Configuration Management and Control

component is supposed to guarantee consistency between

the objects of measurement (products and processes), the

plans for measurement (GQM models), the data collected

from the objects according to these plans, and the at-

tached interpretations. This component will not be imple-
mented in the first prototype.

The integration of all these architectural components is

incomplete. At this point in time we have integrated the
first versions of the experience base, three measurement

tools, a limited version of the GQM analysis and feedback
component, the GQM generation component, and the user

interface management component. Many of the UNIX ®

tools (e.g., editors, print facilities) have been integrated

into the first prototype TAME system to compensate for
yet missing components. This subset of the first prototype

is running on a network of SUN-3's under UNIX. It is
implemented in Aria and C.

This first prototype enables the user to generate GQM

models using a structured editor. Existing models can be
selected by using a unique model name. Support for se-

lecting models based on goal definitions or for reusing

existing models for the purpose of generating new models

is offered, but the refinement of goals into questions and

metrics relies on human intervention. Analysis and feed-

back sessions can be run according to existing GQM

models. Only minimal support for interpretation is pro-

vided (e.g., histograms of data). Measurement data are

presented to the user according to the underlying model

for his/her interpretation. Results can be documented on
a line printer. The initial set of measurement tools allows

only the computation of a limited number of Ada-source-

code-oriented static and dynamic metrics. Similar tools
might be used in the case of Fortran source code [33].

V. SUMMARY AND CONCLUSIONS

We have presented a set of software engineering and

measurement principles which we have learned during a

dozen years of analyzing software engineering processes

and products. These principles have led us to recognize

the need for software engineering process models that in-
tegrate sound planning and analysis into the construction

process.

In order to achieve this integration the software engi-
neering process needs to be tailorable and tractable. We

need the ability to tailor the execution process, methods

and tools to specific project needs in a way that permits

maximum reuse of prior experience. We need to control

the process and product because of the flexibility required

in performing such a focused development. We also need

as much automated support as possible. Thus an inte-

grated software engineering environment needs to support
all of these issues.

In the TAME project we have developed an improve-
ment-oriented (Integrated) process model. It stresses a)

the characterization of the current status of a project en-
vironment, b) the planning for improvement integrated

into software projects, and c) the execution of the project
according to the prescribed project plans. Each of these

*UNIX is a regisleredtfiademarkof AT&TBell Laboratories.
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tasks must be dealt with from a constructive and analytic

perspective.
To integrate the constructive and analytic aspects of

software development, we have used the GQM paradigm.

It provides a mechanism for formalizing the characteriza-

tion and planning tasks, controllling and improving proj-
ects based on quantitative analysis, learning in a deeper

and more systematic way about the software process and

product, and feeding back the appropriate experience to

current and future projects.
The effectiveness of the TAME process model depends

heavily on appropriate automated support by an ISEE. The

TAME system is an instantiation of the TAME process
model into an ISEE; it is aimed at supportTng all aspects

of characterization, planning, analysis, learning, and

feedback according to the TAME process model. In ad-

dition, it formalizes the feedback and learning mecha-

nisms by supporting the synthesis of project experience,

the formalization of its representation, and its tailoring

towards specific project needs. It does this by supporting

goal development into measurement via templates and

guidelines, providing analysis of the development and

maintenance processes, and creating and using experience
bases (ranging from databases of historical data to knowl-

edge bases that incorporate experience from prior proj-

ects).

We discussed a limited prototype of the TAME system,

which has been developed as the first of a series of pro-

totypes that will be built using an iterative enhancement

model. The limitations of this prototype fall into two cat-

egories, limitations of the technology and the need to bet-
ter formalize the model so that it can be automated.

The short range (1-3 years) goal for the TAME sy_stem

is to build the analysis environment. The mid-range goal

(3-5 years) is to integrate the system into one or more

existing or future development or maintenance environ-

ments. The long range goal (5-8 years) is to tailor those

environments for specific organizations and projects.

The TAME project is ambitious. It is assumed it will

evolve over time and that we will learn a great deal from

formalizing the various aspects of the TAME project as

well as integrating the various paradigms. Research is

needed in many areas before the idealized TAME system

can be built. Major areas of study include measurement,
databases, artificial intelligence, and systems. Sp¢_cific

activities needed to support TAME include: more for-

realization of the GQM paradigm, the definition of better

models for various quality and productivity aspects,

mechanisms for better formalizing the reuse and tailoring

of project experience, the interpretation of metrics with

respect to goals, interconnection languages, language in-

dependent representation of software, access control in

general and security in particular, software engineering
database definition, configuration management and con-

trol, and distributed system architecture. We ate inter-

ested in the role of further researching the ideas and prin-

ciples of the TAME project. We will buil d a series of

771

evolving prototypes of the system in order to learn and
test out ideas.
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D. Ross Jeffery (i) & Victor R. Basill (2)

(I) Un£verslCy o6 New South _ales, Auscralfa
(2) University of Maryland, College Park, lid 20742

Abstract

This paper presents a conceptual model of
software development resource data and validates
the model by reference to the published literature
on necessary resource data for development sup-
port environments. The conceptual model
presented here was developed using a top-down
strategy. A resource data model is a prerequisite
to the development of integrated project support
environments which Mm to assist in the processes
of resourre estimaCion,evaluation and control.
The model proposed isa fourdimensionalview of
resourceswhich can be used for resourceestima-

tion,utilization,and review. The mode] is vail-
dated by reference to three publicatibnson
resource databases,and the implicationsof the
model arisingout of these comparisons is dis-
cussed.

Keyworda : software process, methods, tools,
conceptual model, resources, estimation, environ-
ments, software engineering database, va{[dation

INTRODUCTION

To date, the approach taken to the accumulation
of knowledge concerning the software process has
been largely bottom-up. Studies have been carried
out to determine the existence and nature of pro-
ject relationships. These studies,such as [Wolver-
ton 74],[Nelson67], [Chrysler 78], [Sackman et.al.
_8], [Basili, Panlilio-Yap 85], [Bastli, Freburger
811, {Basifi, Sefb_', Phillips 83J, IWalston Felix
77]), [Jeffery 87a,87b], and [Jeffery, Lawrence
1979, 1985] have explored the relationships
between project variables, searching for an under-
standing of the software process and product. For
example, relationships between effort and size,
errors and methods, and test strategy and bug
identification, have been found.

*This research was funded in part by NASA Grant
NSG-5123 to University of Maryland

This paper has two major aims:

I) To brieflypresent a top-down characterization
(TDC) structureof software projectresourcedata,
which aims to facilitate:

I. Further accumulation of knowledge of pro-
jectresourcecharacteristicsand metricswithin
a theoreticalstructure.

2. The storage of project resource data in a
generalizedstructuredway so that estimation,
evaluation,and controlcan be facilitatedusing
an organized quantitative and qualitative data
base.

2) To validate this structure against published
resource data models.

The characterization structure of resource data is

a prerequisite to the development of an Integrated
Project Support Environment (IPSE) in which it
is possible to:

1. Objectively choose appropriate software

processes.

2. Estimate the process characteristics such ss
time, cost, and quality

3. Evaluate the extent to which the resource
aims are being met during development, and

4. Improve the software process and product.

.

The structure presented and validated here is a
part of the TAME (Tailoring A Measurement
Environment) project which seeks to develop an
integrated software project measurement,
analysis, and evaluation environment. This
environment is based in part on the evolutionary

improvement paradigm Idiscussedin Ba.sili,Rom-
bach 87].Itis alsobased on the Goal-Question-
Metric" paradigm outlined in [Basili85] and
[Basili, Weiss 84].

The aims of this paper are firstly to present the
TDC structureor model for the perception of
software development resourceswhich willassist
in the process of taking those aims of, say, a
development manager and translatingthem intoa
set of questionsand metrics which can be used to
measure the software process.It is meant to be
independent of the particularprocessmodel used

0270-5257/88/0000/0187$01,00 © 1988 IEEE
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for development and maintenance. A full descrip-
tion of the model, including its dynamic nature is
described in [Jeffery, Basili 87a and 87b]. The
paper secondly aims to validate the model by a
comparison of the model with the resource data
models presented in the literature.

2. THE PROJECT ENVIRONMENT
CHARACTERIS TIC S

Resources are consumed during the software pro-
cess in order to delivera software product. The
software process has overallcharacteristicswhich
are super-ordlnateto the resources consumed.
Therefore,before resourcedata can be character-
ized it is necessary that a process characterization
profile be established, This characterization
includes data on factors such as:

projecttype

organizationaldevelopment conventions

projectmanager preferences

targetcomputer system

development computer system

projectschedulesor milestones
projectdellverables

In this data the broad project and its environment
characteristics are established, For example, is the
process using evolutionary development or a

waterfall method? Is the project to be developed
by in-house staff or external contractors? What
organizationalconstraintsare being imposed on
the projectdevelopment time? What management
constralntsare being imposed, say on staffinglev-
els?

These factors form the environment in which the
software process must occur, and will therefore
determine, in many ways, the nature of that
software process. A simple example of this is the
question of the process model - evolutionary or
waterfall. This constraint establishes milestones

and the pattern of resource use, and therefore
partially determines the interpretation of the
resource data collected.

3. THE RESOURCE CLASSIFICATION

At the level below the characterization of the pro-
ject and its environment we are interested in clas-
sifying the resources consumed in the generation
of the software product. In this section of the
paper we present a structure for that
classification. This structure covers only the
resource aspect of the project and is therefore
only concerned with the software process and the
resources consumed or used in the process. The
model is not concerned with the software product.
As stated above, the resource model was first
developed and presented in [Jeffery, Basill 87]
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The model structure consi.sts of a four dimen-
sional view. This four dimensional view is divided

into two segments:

I.resourcetype, and
2. resourceuse

In a software process the two segments being
separated are (1)the nature and characteristics of
the resource, and (2) the manner in which we look

at or consider the Consumption of that resource.

3.I Resource Type

In the firstsegment we are concerned with classi-
fying the nature of the re_urce; iS lt=_meone's
time,or a physicalobject such as a computer, or
a logical object such as a piece of software? We

are also interested in describing the properties of
those resources such as description, model
number, and cost per unit of consumption.

By decomposing the resources into different types
different views of the resources can be provided.
For example, it may be important for operations
personnel to know a breakdown of the hardware
resources used on a project according to the
differentphysical machines being used, whereas
from a projectmanager's perspectiveat a point in
time, the specificmachine may not be of interest,
but the availabilityof a certainclassof machine
may be critical.Resource managers will be
interestedin the types of resourcesavailable(for
example, people)and the characteristicsof those
resourcesfor projectplanning purposes.Thus the
categorizationprovided here is the basis of the
resourcemanagement environment, in that itisin
thissegment of the model that the resourcesare
listedand described.

The resources of a software project can be
classifiedas:

- hardware

- software

- human

- support (supplies, mater!sis,
cornmunicatlons facillty costs, etc.)

These categories are meant to be mutually
exclusive and exhaustive and therefore are able to
contain each instance of resource data in one or

other of the categories.

Hardware resources encompass all equip-
ment used or potentially able to be used in the
environment under consideratlon. (For example,
target and development machines, terminals,
workstations).

Software resources, encompass all previ-
ously existing prograrns 4 and software systems
used or potentially able to be used in the environ-

ment under consideration. IFor example, com-
pilers, operating systems, utdlty routines, previ-
ously existing application software).
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Human resources encompass all the people
used or potentially able to be used for
development, operations, and maintenance in the
environment under consideration whether internal
or external (subcontractors, consultants, etc)

Support resources encompass all of the
additionalfacilitles such as materials, communica-
tions, and supplies which are used or potentially
able to be used in the environment under con-
slderation.

The values associated with these resources may be
stored in both price and volume measures, where
volume means, for example, hours of use or avai-
lability, or the number of times a resource is
needed, and price refers to the $ values associated
with that resource. This may be a cost per unit
measure or n cost per period of tlme.

This four-way classification provides an initial
resource-type decomposition. The aim in this
decomposition is to separate the major resource
elements that are used in the software process in
order to provide manageability. This initial
separation is necessary because of the very
different l_ature of each of these resource types
and the consequent difference in attriLutes and
management techniques which are necessary in
the estimation, evaluation, and control of each of
these resource categories.

Further decomposition within this segment may
be desirable and will be dependent on the goals of
the responsible persons. The number of different
posslbilltles increase as the decomposition contin-
ues within each of the major resource categories.
For example, the exact nature of the resource
decomposition wlthin the hardware category will
vary significantly from one organization to
another because of the different hardware utilized

and the organizational structure surrounding that
hardware utilization. For example, it may be
desirable to decompose hardware into target and
development hardware if there is a difference, and
software into operating systems and
languages/editors in order to model say the avai-
lability of cross-compilers.

3.2 Resource Use

Over the type segment we need to impose the
second segment; the "use" structure. The categor-
ization within this dimension allows the resources
consumption to be associated with different per-
spectives of the software process. For example, it
is through this use structure that we are able to
distinguish, for example,

between prlor-project expectations of consump-
tion and resources actually consumed, or

between resources consumed in each phase of
the project, or

between the utilization of a resource and the
availability of that resource, or

5207

189

3-39

between an ideal view of resource planning and
the resources actually available.

The use structure consists of :

1. INCURRENCE

1.1 Estimated

1.2 Actual

2. AVAILABILITY

2.1 Desirable

2.2 Accessible
2.3 Utilized

3. USE DESCRIPTORS

3.1 Work type
3.2 Point in Time

3.3 Resources Utilized

3.2.1 Incurrenee

This category allows the resource information to
be gathered and used in a manner suitable to the
management of the resource. It is necessary, for
example, to store data on *stimated resource
usage, resource requirements, and resource availa-
bility.

This data is necessarily kept separate from the
actual resource incurrence or use, which is stored
via the actual category.

These two categories then permit process tracking

'via comparisons between them and extrapolation
from the actual data. At the project summary
points, explanations and defined data accumula-
tions on estimated and actual resource use provide
feedback on the process. This feedback should
contain reasons for variance between the

estimated and actual so that a facility for cor-
porate memory can be established and the neces-
sary data stored to facl]itate and explain any
updates of the current resource values. It needs to
be noted that the model proposed allows for
different estimates and actuals at different points
in time.

The two classifications are the basis for the struc-

ture proposed because they constitute significantly
different viewpoints on the process, and again pro-
vide mutually exclusive categorization which will
facilitate management estimation, evaluation, and
control.

This structure requires that process data, as it
changes in value during the project, will not be
lost but will be stored _an accessible manner so
that meaningful analysis_f projects can be carried
out using a database that provides complete
details of the project history.



This phl]osophyspecificallyaddressesthe need for
a corporatememory concerning past projects.By
implementing such a structuredproject log the
basic data for such a memory is available in
numeric and text format.

3.2.2 Availability

This category allows storage of a resource use by ;

- desirable
- accessible

- utilized

This categorization provides further refinement of
the resource data. Through this, and say the
]neurrence category., it is possibKe to compare the
actual resources utilized with the estimated utili-
zation, and then trace posslb[e reasons for vari-
ance through the desirable and accessible dimen-
sions. That is, differences between planned availa-
bility and actual availability of a resource will be
significant in understanding the software resource
utilization that occurred during the process.

Desirable is defined as all the resources
that are reasonably expected to be of value on the
project.

Accessibleis a subset of desirable(when
consideringthe projectresourceson]y)and isused
to definethe resourceswhich are ableto be used
on the project.

The differencebetween desirableand accessibleis

those resourcesseen as desirablefor the project
but which were not availablefor use during the
project.This differencemay occur, for example,
because of budget constraintsor inabilityto
recruitstaff.The desirableresourcelistpermitsan
"ideal" planning view. When compared with
accessibleit allows management t¢ see th_e
compromises that were made in establishingthe
project,thus facilitatinga very explicitbasisfor
riskmanagement within the resource database.
The database isthereby ableto hold viewsof not
only the resourcesactuallyappliedto the project
but alsothose resourcesWhich were consideredto
be desirablealong with the reasons for theiruse
or non-use.In thisway the resourcetrade-offsare
made explicit.

Utilizedis a subset of accessibleand is

definedas the resourceswhich are used in a pro-
ject.

The difference between accessible and utiiized

represents those resources available for the project
but not used. This difference will arise because of

three possible reasons:

1. The resources prove to be inappropriate for
the project under consideration, or

2. The resources are appropriate but they are
excess to those needed
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3. The resources are appropriate, and their use
is contingent on an uncertain future event.

The use of these storage categories is somewhat

complex and is explainedin detailfurtherbelow
insection3.4.2.

Through this avaJiab_Jity category we are able to
distinguish between:

(1) the resources which are reasonably expected
to be beneficial to the process (desirable),

(2) the resources which exist in the organization
and are able to be used if needed (accessible),
and

3) the resources which are used in a project
utiliz.ed)

Through this categorization it is then possible to
track resource usage and to pinpoint their use or
non-use and to ascribe reasons particularly to
their non-use as in the case of non-accesslbillty.
As in the INCURRENCE category, the reasons
for divergence between desirable, accessible, and
utilized are stored in a feedback facility.

3.2.3 Use Descriptors

This category provides a description of the con-
sumption of the resource item in terms of three
essential characteristics of the consumption that
item:

1. The Nature of the Work being done by
the resource: (e.g. coding, inspecting, or
designing) This category can be used in con-
junction with other views to distinguish
between process actlvlties, such as human
resources estimated to be desirable in design
work, or machine resources actually utilized
in test[n9 , or elapsed time implications of
inspections,

2. Point in Calendar Time : This category
pinpoints the resource item by calendar
time. In this way resource items (estimated
or actual; desirable, accessible, or utilized)
are associated with a specific point in time
or period of time. This facilitates tracing of
time dependent relationships and the com-
parison of r_esource values over time.

3. ResoUrces Utilized : This category meas-
ures the extent of resource consumption in
terms of hours, dollars, units, or whatever is
the appropriate measure of use.

The Use Descriptors also provide the link to the
work breakdown structure which is commonly
embodied in process models. This link is esta-
blished through the association of a _)art}cular
piece of work being do_ at a point in time with
the work package desclqbed in the work break-
down structure. This point is discussed further
below in Section 8, Validating the Model.
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3.3 COMBINING THE VIEWS

The structure suggested here can be viewed as a
hierarchy for the purpose of explanation. Such a
hierarchy is shown in Figure 1.

(DescrID_IO_ , mtleSto_cs, tlCQet _V_wlr;
_v#lOOmef_t hl_Ow_*e, _tlTver_les, ttg )

4>
Co.furors

p

(Har_,_e. software. _aB

_oort Dt_s ittrlbules of the

IWP[ restore)

(Wo_ _ltuce, C$1en_=¢ _tme

FIGURE I. THE STRUCTURE OF THE TDC MODEL

In this figure we see that the proposed structure
views the softwaxe project (which has attributes
describing that project) consuming resources. The
resources are characterized as having four dimen-
sions of interest (type, use, incurrence, and availa-
bility). At the resource type level we describe each
resource as being one of hardware, software,
human, or support, and having various attributes.
The attributes for each of these four types will be
different in nature. For example, the human attri-
butes might include name, address, organizational
unit, skills, pay rate, unit cost, age, and so forth.
The attributes for hardware will be quite
different, describing manufacturer, purchase date,
memory capacity, network connections, or similar
types of characteristics.

At the next level in the diagram we model the use
of the resource. In the first instance this involves

the type of work that the resource is performing,
the point (or span) in calendar time at which the
work is being done, and the measure of the
amount of work done. This last measure (amount
of work) might be expressed in person-time,
execution-tlme, connect-tlme, or whatever is the
relevant measure of work for the resource
instance.

The use of the resource is then described as being
either estimated or actual, and both of these may
be desirable, accessible, or utilized. In this way
the followingconceptsare supported :

1. Estimated Desirable : The resources con-
sidered "ideal" at various stages of the planning
process.

2. Estimated Accessible : The resources
which are expected to be available for use in the
process, given the constraints imposed on the
software process (a contingency plan).

3. Estimated Utilized : The resources which
it is anticipated will be used in the software pro-
cess.

4. Actual Desirable : With hindsight, the
resources which proved to be the "ideal" consider-
ing the events that occurred in the software pro-
cess. A part of the learning process.

5. Actual Accessible : Again with hindsighf,
the resources which were actually available and
could have been utilized. A part of the learning
process.

6. Actual Utilized : The resources actually

used in the software process.

Categories one through three are used initially for
planning purposes. The numeric and text values
associated with each of these three categories may
be derived from:

a. individual or group knowledge
b. a knowledge base

c. a database of prior projects, and/or

d. algorithmic models

At the very simplest level, the planning process
might establish only numeric values in the
estimated utilized category based on individual
knowledge alone. In essence, this is the only form
of estimation used in many organizations, wherein
project schedules and budgets are established by
an individual, based on that individuals experi-
ence. These estimates represent the expected pro-
ject and resource characteristics for the duration
of the project.

The extensions suggested here allow these esti-
mates to be enlarged in the following dimensions :

The nature of the estimate
The source of the estimates

The timlng of the estimates

1, The nature of the estimate. The model
allows project and resource managers to distin-
guish between desirable, accessible, and utilized
estimates as discussed above. The estimated desir-
able dimension would be used at a fairly high
level in the project planning process to outline the
hardware, software, people, and support resources
that are considered to be desirable for the project.

This may list specific ._.eces of hardware and
software which are desirable at certain points in
time. It might also be used to list characteristics

or"the people (such as skills), tha_ wou_d be ideal
on the project. The accessible dimension would
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then reflect the expected resources that will actu-
ally be available to be used. Again this could be
at a fairly high level, indicating the resources
available, the differences between these and those
desirable, and the reasons why the two categories
do not agree; reflecting cost constraints, or risk
attitudes which have been adopted as part of the

project management profile. The utilized category
would normally extend to a lower level in terms of

the project plan, detailing estimated resources
perhaps down to the work package level and short
periods of time.

2. The source of the estimates It was sug-
gested above that there are four major possible
sources for these estimates; individuals or groups
of people, a knowledge base, a database of prior

rojects, and algorithmic models of the process.
ach of these should be supported in a measure-

ment environment, and each has significant impli-
cations with respect to the design of such an
environment. The current state of the art appears
well equipped to support algorithmic models of
some parts of the est]mation process (for example,
estimates of project effort based on one of the
many available estimation packages such as
COCOMO [Boehm 81], SLIM ]Putnam 81], SPQR
[Jones 86]). Similarly the tools available in the
database environment allow the storage and
retrieval of numeric data on past projects. How-
ever the storage and searching of large volumes of
text data on prior projects, the use of a
knowledge base, and the support of group decision
support processes are all the subject of current
research (see for example, [Bernstein 87],
[Nunamaker, et.al. 88], [Barstow 87], [Valett 87]).

The timing o/ the estimates In the struc-
ture suggested, all estimates may be made before
the commencement of the software process and
also at any point in time during the process. How-
ever there are certain po!nts in time during the
process at which estimates are more likely to be
updated. These are:

1. at project milestones

2. at manager inltlated points in time at
which major divergence between estimate
and actual is recognized by the manager

3. at system initiated points in time at
which the measurement system recognizes a
potentlaily significant divergence between
estimate and actual

The third possibility implies that the measure-
ment system is able to intelligently recognhe the
existence of a problem with respect to the com-
parison of actual and estimate. This facility is
suggested as needed because one of the major
management stumbling blocks is generally not
concerned with taking action once a problem is
identified, but the identification of the problem in
the first place. Thls ident[t]cation problem occurs
because of the volume of data that needs to be

roCessed in order to recognize a potential prob-
m state. It is the measurement environment
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which is expert at processing the data volume. It
is the manager who is expert at taking corrective
action once the problem is highlighted.

Categories four (actual desirable) and five (actual
accessible) of the structure exist to provide a feed-
back and learning dimension to the project data-
base. These values would be determined after the

project is complete. And in the comparison of the
estimates made at various stages of the process
and these two categories, a process is facilitated in
which the organization can learn based on the
variance of expectations and actual which have
occurred in the past projects. As with the esti-
mates, the categories of desirable and accessible
are used in order to allow the comparison of
"actual ideal" with "actual available _ so that an
ex-post 'view of the management of the process
can be captured. The question being asked here is;
"How could we have handled resources better?" It
]s a learning mechanism to generate explicit new
knowledge for the knowledge and data ba_es, and
also to improve individual and group knowledge.

Category six (actual utillzed) will be the most

active category within the structure, carrying all
of the values assoclated with the resources of the

project. These values will be updated on a regular
basis throughout the software process, and will be
the source of the triggering process mentioned in
the discussion of updates to the estimates.

The data collected during the project should be
able to:

1. increase individual ahd group knowledge

2. improve the knowledge base

3. add to the prior project database, and/or

4. support the algorithm determination

process in the individual organization.

In summary, the model proposed is a four dimen-
sional view of resource data. The four views in the
data model are:

1. RESOURCE TYPE: which is a mutually
exclusive and exhaustive categorizatien
which Captures the nature of theYesource.

2. IN_NCE: which is also mutually
exclusive and exhaustive describing actual or
estimated resources. It carries an addkional
feedback e|em_ent to contain the corporate
memory exp[a[fiing tSe difference bevween
the category values and dlfferences over
time.

3. AVAILABILITY: in =Which each categ0ry
is a subset of the the higher category, allow:
ing desirable, accessible, and utilized
resources. Again feedback is used to explain
the differences between categories and over

time.
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4. USE DESCRIPTORS: which categorizes
specific elements in the nature of the
resource use. These are the nature of the
work done by the resource, the point in time
of the work, and the amount of that work.

3.4 USING THE TD_'STRUCTURE

3.4.1 At the project level

Discussion so far has applied the proposed 4D
structure to _source cla-_sification. It is appropri-
ate to also consider using this structure, or a part
of it, for the Project Environment Characteristics
outlined in section 2 above. In thls way the con-
straints acting on the software process can be
identified as applying:

to a particular type of resource,
either estimated or actual
with a stated availability

at a point in time,
concerning a particular type of work

An overallmodel of the software projectisshown
in Figure 2. In thisfigurethe meta-entityproject
is decomposed into a number of tasks or con-
tracts, each task consuming the meta-entity
resourceand producing the meta-entityproduct.
In the implementation of this model the mets-
entitieswillrequiremany entitiesto characterize
them.

:a_[$?$ of

FIGURE 2. AN OVERVIEW OF THE SOFTWARE PROJECT

Thus the project has characteristics,as do the
tasks and subtasks, the resources,and the pro-
ducts. Characteristicsat allof these levelsneed
to be stored.

Through the storageof the projectcharacteristics,
the constrMnts actingon the product or process
determined at any time beforeor during the pro-
ject can be tracked for consistency,and any
changes noted to facilitatea relationshipanalysis
between the project and the resourceoccurrence
valuesaccumulated duringthe process.
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A simple example of the applicationof thisstruc-
ture would be where the processorganizationis
changed during the development, say a change
toward greater user involvement. This change
would be reflectedin a differencebetween the
estimated project characteristic and those at the
point in time at which the change occurred. This
in.formation is then used to explain variances that
occur in the process data, such as a changed pat-
tern in staff utilization.

Examples of the data stored at the project level
would include:

- the type of project

e.g.real time, business application
- the project elapsed time

- the total project effort
- the total project cost

- the type of development process

e.g. evolutionary

- the target computer

- the development computer

- the project deliverables
- the project milestones

- the project risk profile

The applicationof the TDC model at thislevel
providesa mechanism for storingestimates,accu-
mulating actualvalues,and facilitatingfeedback
and learningat the levelof the project and its
development environment.

If we take the projectmilestonesas an example
and assume that the milestonesapply equallyto
all resource types, then the model suggests we
store:

estimated desirable milestones. This is an
"ideal world" view of the project milestones;
the dates at which we could deliver if we were
not constrained.

estimated accessible milestones. Given the

constraints we will be working under, these are
the dates at which we could deliver if it were

necessary.

- estimated utilized milestones. These are the
dates at which we expect to deliver, taking into
account the dlmensions of desirable and acces-
sible.

These three views, in their values and difference,
provide a perspective on the risk associated with
the project; the smaller the dlfference between the
categories, the higher the risk. More specifically,
the difference between estimated desirable and
estimated accessible shows the extent to which
elapsed time could be changed if the constraints
could be modified. For example, if the estlmated
final desirable milestone were June 30th and the



estimatedfinalaccessible milestone was August
30th, the difference of two months measures the
estimate of the extent to which the project could
be compressed if the restricting constraints could
be be removed.

The difference between the estimated accessible
and the estimated utilized provides a measure of
the available slack in the milestones. This
difference is the extent to which the milestones
could be compressed, without modifying the pro-
ject constraints. In the example above, the
estimated utilized final milestone might be say
November 30th. In this ease the difference
between accessible and utilized of three months

reveals the amount of elapsed time compression
that is possible on this project without changing
constraints.

In these relationships we see some of the dynamic
nature of the project characteristics. This suggests
that for the TAME measurement environment, if
a change in project characteristics such as the
nature of the process occurs, then this should
trigger the review of the project milestone and
effort values, which will also be reflected at the
lower level in the task and resource data values.

In the actual category we need to store the •

actual desirable milestones. As explained
above, this category is used for feedback and
learning. It carries the values calculated after
project comp]etior, based on the knowledge
gained about the project during its completion.
This value is again an "ideal world" value.

- actual accessible milestones This is also a

feedback and learning category which says,
based on the constraints which did eventuate

in the process what milestones could have been
achieved?

- actual utilized milestones. Thls category stores
the dates of the milestones achieved.
Differences between actual and estimated are
stored in a feedback facility to provide a
mechanism for learning and a mechanism for
calculating the actual desirable and accessible
at project end.

3.4.2 At the resource level

The description of the use of the TDC structure

at the resource level amounts to a process model
of resource planning and use in software develop-
ment. This process can be described as an
interacting three-stage process involving the sub-
processes of:

1. planning
2. actualization
3. review

The planning process establishes and records the
resource expectations or estimates before and dur-
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ing the software project, and the actualization

process tracks and records the actual use of
resources dur]ng the software project. The review
process compares actuals with estimates for the
purposes of modifying the estimates and learning
from experience. In this way the feedback referred
to above provides information for an historic
resource database for future planning and estima-
tion. Details of this process model are given in
[Jeffery, B_ili 87].

Applieat|on of the planning and review
cycles

In any particularorganization,itmay be deemed
sufficientto use only a part of the planning and
review processesoutlinedhere,and thereforeonly
a part of the TDC structure presented in this
paper.

For example organizationsmay not wish to use
project reviews, or they may not consider it
appropriateto carry out formal contingency plan-
nmg or risk management. At the simplest level
only the estimatedutilizedand the actualutilized
may be used,perhaps providinginput to an infor-
mal project learningprocess which occurs at the
individuallevel.

Specifically,it is most Hke[y that in software

environments with very littleuncertaintyIsay-an
imp[ementatlon of the twentieth slightlydifferent
versionof a well known system) theremay be no
need to explicitlyc_onsiderthe desirableor even
accessibledlmensions of the resource model. If
uncertainty isvery low, the utilizedlevelof the
model may capture all the necessary data. The
advantage of the model in thls case is that the
data excluded is done so in the knowledge that
there is no information in those levels not used.

In higher uncertainty environments, the model

prompts the estimator to think explicitly of the
resource risks and uncertainty of the development
process, and to quantify or express that risk as a
part of the resource database.

4. VALIDATING THE MODEL

Three significant pieces of work in the literature
which provide definitions of the types of data
needed to support the measurement of the

software process are [Penedo, Stuckle 85],
[Tausworthe 79t, and ]Data & Analysis Center for

Software 84, STARS Measurement DID Review].

Penedo and Stuck[e (P&S) provide an excellent
structure and content of a project database for
software engineering environments which can be

used here to test whether the model resulting
from the top-down methodology employed is able
to encapsulate all of the process data suggested by
them as needed in a proj_t database, Table 1
lists the entities identified by Penedo and StuckIe
and associates the particular model categories
which would be used in the model derived here to
describe them.
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The first aspectwhich isnoticed when mapping
the 31 P&S entitytypes to the TDC model isthat
the broad structurepresentedin section2 above
(The Project Environment Characteristics)is an
important linkbetween the software processand
product. The P&S listcontains entitiesfor the
project,task,product, and resourcecategoriesof
Figure 2. In table 1 the P&S entltiessuch as the
requirement aud risk have been categorized as
projectcharacteristlcs,while entitlessuch as data
component, externalcomponent, document, inter-
face,product description,product, and software
component have been categorized as product
instances.

But the focus of thispaper isnot on the project
or the tasks which go togetherto make up that
-project.Rather the focus is the resourcescon-
sumed by those tasks.In thisrespectwe notice
thatonly a subsetof the availableTDC categories
are used in the P&S entities.For example, at the
Resource Type levelwe see instancesof allfour
categories(Hardware, Software,Human, and Sup-
port),but at the next levelit appears that the
P&S model concentrateson actual values.It is
difllcu]tto see how the P&S mode] storesvalues

for estimates,and particularlyhow the informa-
tion explainingdivergencebetween estimate and
actual can he stored.The same appliesto the
Availabilitylevelof the TDC structure.The P&S
model appears to concentrate on the Utilized
aspect and does not appear to model the other
availabilitydimensions presented in the TDC
structure.This may wellbe because these dimen-
sionsof resourcedata were considerednot to be
necessaryin the environment of the P&S study.

Table I. P_kS DLtabue Entities in The Model Structure

Penedo & Stuckle Top Down Model

Entiti_ Categories

Accountable Tuk The tuk nnd contract are the

Itad Contact co1_v_l'_nce o_"prc_Mn

and product and subsets of the project.

It in ia • contract

or tuk that resources are consumed

to produce the product. Thny a_e not,

theref_e, resource entities

Chn|n hem Th_ item m $ener_iy usociMed

with n product ¢h_ge.

Conlumsble PurehMn *Support resource, iacurrence L.d uv_nbility

not n_ecifled.

D-'a Compo0ent Product Entity

Dictlonacy *Softwnre ru.ource, or perhl-pn product entity

Document Product Entity

Equipment Purchue "HLrdwate resource

Extera_ Component *Hm'dwzre resource or perhnps Product _,ntity

H_dwLte Architecture *H_'dwate resource _r perhlLp| product entity

H_dw_e Component *_-l_dwl_e resouT_e Or prO4UCt entity

interface Product ]_ntlty

Milestone *Proiect Entity

Oper_ion_ Scenario Product Entity

Per_n *Hum_ R.ource

Problem Report 'Process u patt of feedblck or Product entity

Product Product Entity

Product Description Product Entity

Requirement Project Entity

Resource *Supgort r_source

Rink *Pro,iect Entity

Simul_ion ProducT, entity

Software Component Product Entity

Software Configuration Product Entity

Software Executable Tuk Product Enti_z

Software Purchue *Software resource

T_t Csse *Software resource _nd/or precinct entity

Test Procedure *T_k or project chm'tcterlstlc

Tool *Softwate resource

WBS Element Project Decomp_ition Entity, may "be the ame

u accountable tub _.nd contrnct

It remains to be seen,of course,whether allof the
categoriesavailable in the TDC structure are
deemed necessaryin any particularenvironment.
However, the advantage of such a structure is
that exclusionof certaincategoriesof data occurs
explicitlyratherthan implicitly.

The second model suggestedas a means of testing

the TDC model isthat provided by ITausworthe
79]. In this work the models entitiesare not
presentedin a listform, but are included in text
discussionand reportforms.For thisreasonithas
been necessary to convert the form to a listof
entities.In doing so it ]s always possible that
misconceptions of Tausworthe's ideas may be
•present.However, even ifincomplete,it provides
another testof the suitabilityof the TDC mode!,

The Tausworthe structureisvery much oriented
towards a decomposition of the projectintotasks
and the associationof resourceswith those tasks.

Thus the modellingapproach used by Tausworthe
is somewhat at a tangent to the mode]ling
approach used here since once again our focus is
on resources, not the activities which consume
those resources. This is not to say, however, that
it is not necessary to associate resources with
tasks, but that it may-._e necessary to model
resources apart from the t_asks that consume them
in order to better understand all of the dimen-
sions of resource data.
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The entities listed here are a partial list derived
from the work breakdown structure, the software
technical progress report, the software change

analysis report, and the software change order of
Tausworthe's model. From these sources the fol-
lowing resource data, among others, were
identified as necessaw to establish a resource
database. Only some"_ the Tausworthe entities
have been listed here. Tb.is has been done to the
extent that is necessary to illustrate the conclu-
sions drawn.

From Table 2 it is clear that the focus of atten-
tion in the Tausworthe work is the project and
the decomposition of that project into its com-
ponent parts. Thus we see that the resource data
is associated with particular tasks and activities.
In viewing the data in this way a structure is pro-
vided which is excellent for control purposes, in
that it establishes units of accounting which are
more easily estimated and controlled. What is not
clear from the structure, however, is how ques-
tions of desired versus accessible resources can be
modelled, nor exactly how actual versus estimated
can be compared and conclusions stored for use in
later project estimates. It is also difficult to see
how the model proposed in the WBS can easily
facilitate the analysis of resources consumed on a
particular activity type (say inspections), regard-
less of the project phase in which the inspections
were done or the project task in which 'they were
done. Thus questions such as the value to the pro-
ject of using a particular form of inspection may
be difllcult to answer because the data model may
make this data difficult to isolate.

Tn'bh 2. Tsusworth* D_rivtd Entity List

Tnusworth,

Entitim

StaB:

St_ I.D.

St_ N,m,

$tLff Phon,

_Fuk :Activit3,:

Tuk LD.

Tuk Actiyity I.D.

Budlet $

Tuk:

TME LD.

TMk b/am,

TMkDeJ_

TMk M'pr

Ta*k Budg*t $. ETC.

Sottwsre C_l,e OTd*r

S/wsre E)

Chang. Order #

Activity ID

Person ID

Description

Start Dat4,, eta,

Top Down Model

CsCeSori_ _

Hurna_t relouree, eetimtted or tctueJ

The _ollu .*J,e may be • s,m or _1 rt_ourcw

¢onsum.d on • tmlk-*ctlvlty, estimated or •¢tual

Th* wlJun bl t sum of id] rt-Joureen, entire•ted

*rid/or _'_. u*J

The focus ta tlaia on the tetivlty. The resetltees

may be tar type, eltimtted or *_tutJ.

However, it is clear that the resource data sug-
gested as necessary by Tausworthe are readily
modelled in the TDC structure. The importance
of the application of the TDC model to the pro-
ject and task level is highlighted by Tausworthe
and also Penedo & Stuckte, so that the associa-
tion of resource data and project work breakdown
structures can be facilitated.
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Perhaps the most detailed resource data collection
forms developed so far has been that of the

STARS Measurement Data Item Descriptions.

The information which follows in Table 3 was

derived from stars Software Development
Environment Summary Reports DI-E-SWDESUM,

DI-F-RESUM, DI-F-REDET, [06 JULY 1984 I.
These reports contained information most
relevant to the task of validation of the TDC

model. The data suggested as necessary by these
reports concerned aspects of the project, the pro-
cess, and the product. In this paper only those
aspects concerning the project and the process
have been listed. As with the Penedo and the
Tausworthe models, the data model implied in the
work appears not to have been developed on the
basis of a theoretical structure, but rather from a
pragmatic evaluation of those data items deemed
necessary for project management. In addition,
because the data items are
listed in the context of data capture form J, some
rearrangement of these items has been carried out
in the following data list in order to provide a
clearer presentation of these items.
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TABLE 3. STARS Measurement Data Items

Descriptions

=

A. PROJECT NAME

Project Name _.
Contractor ----
Contract No.
Start date, Finish Date

Software Level (System, Subsystem, CSC_
Application Type
Application des_riptinn
Revision of current project (y/n)

Revision -version no.
of software redeveloped

ToUd no. lines of source code

Initial development (y/n)
if y - Total no. lines source code

no. of i_tructinne
no. of data words

System Structure- ..

single overlay
multiple overlay

(_ overlays, avg. sise bytes
independent subsystems
(# subs, avg.sisebytes

virtual memory system

(amount of addressable memory, siae bytes
Progamming language and _ used
Constraints -

Execution Time, rating
Main memory size, rating
product Complexity, rating
Databue size, rating

Methodology, rating
required reliability, rating
Other, rating

Concurrent Hardware development (y/n)
Operational site development (y/n)
Multiple site development (y/n)

no. of development sites
no. of test sites (if different)
Other Constraints .(text).
cost estimation amsumptions made
cost estimation methods used and supporting

rationale

rationale for discrepencies between current
estimates and all previous estimates

B. SITE CONFIGURATION INFORMATION

Site 1D
Description (development, test)

Computer manufacturer
Model name
Model no.

no. of persons accessing site
no. of input terminals
Terminals in each programmers office (y/n)

Input terminals in central area (y/n)
no. of card readers

no. of printers
no. tape drives
no. disk drives

other peripberals.(specify).
no. documentation set_ on hardware/software

environment available

no. site support personnel
amount of storage in development computer

main memory real

main memory virtual
aux memory

DEVELOPMENT SITE ACCF__S

Site I.D.

Access type: ¢_ batch
e_ interactive

Average job turnaround time
no. hours per day development site available
no. days per week development site available
no. hours per day utilized

no. days per week utilized

TEST SITE ACCF--£S

SiteI.D.

no. hoursper dsy testsiteavailable

no. days per week testsiteavailable

no. hoursper day testsiteutili_ed

no. days per week testsiteutilised
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C. PROJECT PHASE INFORMATION

Iexamples]

requirementa

Development system used (y/n)
Documents maintainedon the dev.system (y/n)

Methodology (formalspec.,functionalspec.,

proceduralspee.,englishspec.,none,other)

Tooh/Formalisma (requirementsanalyzer,word
processor,on-lineeditor,em.t.,librarian,

spec lang_ PD_L, none, other)
startand finishdate

delivarab]es

dMlgn

Development system used (y/n)

Documents developed/maintainedon system (y/n)

Methodology (topdown, bottom up, hardest

first, pmtotyping, iterative enhancement,
none, other)

Tools_0rmaiisma ( softwaredev. folders,

design reviews, walkthru's, flow charts,
HIPO, etc.)

start and finish date

deliverables

implementation

Development system used (y/n)
Documents maintainedon development system (y/n)

Unit testingperformed on dev.system (y/n)

Methodology (topdown, cpt,prototyping,etc.)

Tools/Formalisra_ ( code reading, pre-compiler,
dbms, ere)

start and finish date
deliverables

test and Integration

Testingperformed on development system (y/n)

Documents maintained On system (y/n)
Level of testingperformed on dev system

Methodology (specdriven,top down, none,etc)

Tools/Formalisms(...... )
start and finish date
deliverables

D. PROJECT PERSONNEL INFORMATION

]these values can be derived from more detailed

records]

ProjectName

Job Classification(supervisor,consultant,

analyst,programmer, siteoperator,

librarian, other)
Avg. no. years application experience
Avg. no. years experience with software
ArK. no. yrs software training

Avg. no. yrs programming language experience
Avg. no. yrs hardware experience
Avg. capability rating

eommtmlcatlon

Regular projectstatusmeetings (y/n)
How often?

Personstypicallyinattendance

(cl_ification,No.)

E. RESOURCE EXPENDITURE ATTRIBUTES

summary level

]these values may be derived]

Project name

total system cost, estimated, actual
total software cost, estimated, actual
total labour cost $, estimated, actual
total software labour cost $. estimated, actual
total labour hours, estimated, actual

total software labour hours, estimated, actual
total staff size, start, finish, estimated,

actual

totalsoftwarestaffsize, start,finish,

intimated, actual

totalcomputer costa$,estimated,actual

total software computer costs $, estimated,
actual

totalcomputer hours,estimated,actual
totaltravel costs$

total material costs $
total miscellaneous costs $

[these may be divided by milestones or activities]

labour costa

ithesevaluesmay be derived]

labourcategoryid
tots] hours

no. of people, start, finish
cost$

computer hours

computer costs$

computer costa

Ithese valuesmay be derived]

no. of computers used

no. of different types of computers
total computer hours

*** for each computer***

computer i.d.
number ofhours

totalcomputer costs$

costof each computer $

tuk costs

[these values may be derived I

tLsk i.d.

definition
personnel costs
software costs

hardware costs
supplies costs

****for each task'*** ****for each ta_k'***
****for each labour category""

totalhours

no. ofpeople,start- finish

cost$

computer hours

computer cost$
travelco_t$

total cost of labour
total hours of labour

total cost of computer

total hoursof'computer
totalcostof travel

total cost of materials
total cost of miscellaneous
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The Table provides data items to describe the
project, development and test site configurations
and access, project phases, personnel assigned to a
project, and resource expenditure summaries. The
detail shown here has been selected to highlight
the volume of data items which will be necessary
in a measurement system.

In terms of the TDC model, the STARS list shows
recognition of the need to store resource availabil-
ity in that the development and test slte access
data includes an accessible and a utliized dimen-
sion. There appears, however, to be no facility for
storing the desirable dimension suggested in the
TDC model. The STARS list also shows extensive
use of the incurrence dimension in section E -
Resource Expenditure Attributes, wherein
estimated and actual resource use is tracked. The
USE DESCRIPTORS of work type, point in tlme,
and resource utilized are also extensively used in
the STARS list. It is not possible from the docu-
mentation, however, to determine the reasons that
the availability dlmension was not applied more
extensively in the data model (for example acces-
sability of personnel or specific hardware or
software items are not modelled). It can be
assumed that it was considered to be ]nnapproprl-
ate for entities other than site access.

The STARS data list provides considerable sup-
port for the theoretical structure provided in the
TDC model. It reveals a considered need for the
storage of :

I.Projectinformation

2.Resource type information
3.Incurrenceinformation

4.Availabilityinformationand

5. Use descriptors

Of considerable significance is the fact that none

of the three schemas considered here have sug-
gested data entities or items which cannot be suc-
cessfully modelled using the TDC structure. It
appears that the schemas considered here may be
incomplete when compared with the TDC struc-
ture, but the reasons for the apparent exclusion of
data entities and items are not known, but may
be based on purely pragmatic reasons.

5. CONCLUSIONS AND IMPLICATIONS
AT THE RESOURCE DATA LEVEL

The model presented here is meant to be general
and provide a perspective for project manager and
organization in identifying and tracking resources.
It should help in better understanding the
compromises made in resource allocation. How-
ever, it is assumed that any project (or even
organization) will work with a subset of this
model. For example, one might limit the number
of availability views, such as combining desirable
and accessible, or track only a subset of the
resource categories. The subsetting process pro-
vides feedback on what has not been tracked. The

actual data collected is driven by the
goal/question/metric paradign based upon the
goals set by the project and the organization.

The conclusions to be drawn from this research
can be divided into two categories: those concern-
ing the model itself, and those concerning the
validation of that mode].

In terms of the model itself, the discussion has
suggested storage of resource data of a type which.
has significant storage and access implications;
that of numeric and non-numeric project and
resource data. It has been assumed in the discus-
sion that the resource database is able to store
not only numeric resource values, but also reasons
for those values along with the resource environ-
ment characteristics.

A system using these suggestions should be able
to e_]ciently search the numeric and non-numeric
data in a manner which will eventually enable the
system to propose reasons for numeric variances
which occur in the database. In this way the sys-
tem must be able to not only highlight a
significant variance, say between an estimated
and an actual resource occurrence value, but it
should also be able to search the project charac-
teristic database and the numeric and non-
numeric resource classificatlon database in order
to propose or associate reasons for the variance.

It can be said that the model presented here has
four broad implications :

I. It proposes a resource categorization
which will allow project database designers to
explicitly consider the content of that database
against a model of the resource environment. In
this way, a particular individual's view of the
resource data can be positioned in a context and
compared with other external views of the same
data. This model should motivate the resource
data user to consider the measures that may be
beneficial ia seeking improvement in the particu-
lar process goals.

2. It suggests a project management
system's environment which will be able to
achieve far more in terms of management support
than any known environment available today. It
is able to do this because of the extent and
dynamic nature of the model of the resource data
proposed.

3. It provides a resource categorization
which can be used when considering relationships
between tasks or contracts and resources.
Specifically it provides a focus for the considera-
tion of the resources consumed within a task.

4. It provides assistance when applying the
Goal/Question/Metric process paradigm, so that
questions which answer the resource purpose of
the study are highlighted and the measures
appropriate to those questions are suggested.

In terms of the validation of the data model we
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have seen by reference to three published models
that the proposed theoretical structure for
resource data is able to encompass all that has
been suggested as necessary for resource manage-
meat. Also of significance, is the fact that each of
the publications used contains different views of
the nece._ary data and that each one omits cer-
tain elements that the other appears to consider
of benefit. This is, of course, the norm in compar-
ing different external views in a database design
exercise. One advantage of the TDC model is that
it is able to act as a data model template, sug-
gesting the data categories which need to be con-
sidered when designing a resource data schema. If
it is used in this way the data items excluded
from the particular resource model instance will

have been excluded on the grounds that they are
deemed unneccesary in the partlculai-en_,]ron-
ment, rather than being excluded because the
category of data ( for example, estimated desir-
able hardware for testing) was not noticed by the
data base designers as necessary.

Thus we can be confident that the theoretical
model proposed in the TDC structure can contain
all of the project and resource data so far su_
gested in the literature as necessary in a resource
management environment. In addition it appears
that there may be project and resource informa-
tion of use in resource management which has not
been included in prior models. The practical need
for this additional information has not been
justified in this piece of research but is the subject
of other current work by the authors.

We have begun to apply the model independent
of TAME in a couple of industrial environments
and have found it provides a useful framework for
planning and tracking resources throughout a pro-
ject. We have not yet reached the stage where we
have been able to evaluate the feedback process,
however.
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SECTION 4 - ADA TECHNOLOGY STUDIES

The technical papers included in this section were originally

prepared as indicated below.

• "Experiences in the Implementation of a Large Ada

Project," S. Godfrey and C. Brophy, Proceedinqs of

the 1988 W_hinqtQn Ada Symposium, June 1988

• "General Object-Oriented Software Development with

Ada: A Life Cycle Approach," E. Seidewitz, Pro-

ceedinas of the CASE Technoloqv Conference, April

1988

• "Lessons Learned in the Implementation Phase of a

Large Ada Project," C. E. Brophy, S. Godfrey,

W. W. Agresti, and V. R. Basili, Proceedinas of the

Washinqton Ada Technical Conference, March 1988

• "Object-Oriented Programming in Smalltalk and Ada,"

E. Seidewitz, Proceedinas. 0f the 1987 Conference on

Obiect-Oriented Programming Systems, Lanauages and

Applications, October 1987
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EXPERIEHCES IN THE IMPLEHENTATION OF A LARGEAda PROJECT

Sally Godfrey
Code 552

Goddard Space Flight Center
Greenbe I t, Md. 20771

(30I) 286-3600

Carolyn Brophy
Department of Computer Science

University of Maryiand
College Park, Nd. 20742

(30I) 454-87II

BACKGROUND

During the past several years, the
Software Engineering Laboratory (SEL) of
Goddard Space Flight Center has been

conducting an experiment in Ada [6],[8] to
determine the cost effectiveness and

feasibility of using Ada to develop flight
dynamics software and to assess the effect
of Ada on the flight dynamics environment.

This experiment consists of near parallel
developments of a dynamics simulator in both
FORTRAN and Ada. A study team consisting of
members from the SEL has monitored
development progress and has collected data

on both projects throughout their
development.

Both the Ada and the FORTRAN teams

began work in January, 1985, using the same
set of requirements and specifications to
develop their simulators. The FORTRAN

dynamics simulator team completed acceptance
testing by June, 1987, after following a
development life cycle typical of projects
in the flight dynamics environment [5]. The
development was carried out on a DEC VAX-

11/780 and the completed FORTRAN dynamics
simulator consists of about 45,000 source
lines of code.

The Ada development began with a period
of training [7] in both the Ada language and
the methodologies appropriate for Ada [11].
The team was not previously experienced in
Ada, although they were more experienced
than the FORTRAN team in both the number of

years they had programmed (8.6 years
compared to 4.8 for the FORTRAN team) and
also in the number of languages they knew (7
compared to 3). The Ada team was also

experienced In more types of software
applications, but only 43% of the Ada team
had previous dynamics simulator experience
compared to 66% of the FORTRAN team.

Following the training period, the Ada

team began a phase of analyzing the
requirements and then they began design
using an object oriented methodology called
GOOD (General Object Oriented Design) which
was developed by the team during the
training and design phases. More
information on GOOD and the lessons learned

during the design phase can be found in [2],
[4], and [10].

Coding and unit t estlng began in :April,
i986, on a DEC VAX 8600 and continued
through June 1987. The Ada project has

completed system testing and consists _f
approximately 135,000 source lines of code .
This paper Will describe some of the
similarities and differences of the two
projects and will discuss some of the
interesting lessons learned during the
code/unit test and integration phases of
thls project.

INFORMATION COLLECTION

The information presented in this paper
was collected by using the following four
methods: i) Collection of SEL forms

2) Interviews 3) Observation of development
4) Code analysis. The SEL forms solicit such
information as a detailed breakdown of the

hours spent by programmers, managers, and
support staff on a project and detailed
information on changes and errors which
occurred during the development. During the
course of the project, over 2000 forms were
collected; about 625 of these documented-
errors and changes.

I. A source line of code is defined to be

any 80 byte record of code including
commentary, blank lines and executable code.
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Each member of the Ada team (11 total)
was interviewed individually to gain some
insight into the experiences he or she had
during implementation. Team members were
asked questions concerning ease or
difficulty of implementing features, unit
testing, integration, correcting errors,
using tools, etc. Questions concentrated on
an individual's particular area of work, but
general subjective questions were asked of
the entire team. Observation of the

development was accomplished by attending
reviews and regular implementation meetings
held by the team. These regular
implementation meetings were actual working
meetings in which team members discussed
progress, solved implementation problems,
clarified interfaces, shared knowledge, and
planned implementation strategies. In
addition, much information was gained
through informal conversations with the team
on Implementation progress. Information
received through code analysis was actually
collected two ways. First, the code was
examined to tabulate such attributes as
number of modules, number of lines of code,
number of comments, etc. Second, another Ada
team, in the process of Ada training,
performed code reading on parts of the
dynamics simulator code as a training
exercise and they provided their comments on
the code.

The remainder of this paper will
concentrate on some interesting comparisons
between the FORTRAN and the Ada projects and
some of the major lessons learned during the
implementation phase of the Ada project.

1. FORTRAN/Ada PROJECT COMPARISONS

Several factors need to be considered

when trying to directly compare metrics from
the FORTRAN project and those from the Ada
project. First, the FORTRAN project was
considered to be the "real" operational
version of the dynamics simulator being
developed, and as such, it was necessary for
that project to meet the schedules imposed
by an impending launch date. The Ada team,
on the other hand, was allowed a more
relaxed schedule for development which
included adequate training time, time to
experiment with design methodologies, and
finally, time to recode or enhance if

"better" methods occurred to the developers.
One result of this extra time was the

development of a much more sophisticated
user-interface for the Ada project.

Second, this general type of dynamics
simulator was a very well-known application
for the FORTRAN team since similar
simulators have been built repeatedly in
this environment. Thus, the general design
of the FORTRAN simulator was reused from

previous designs and was known to be a very
satisfactory design for the application. In
addition to the design, much of the code was.
reusable--about 36%. The Ada team developed
a new design [I] which they felt was more
suitable for Ada and which they felt more
accurately represented the actual physical'
system they were trying to simulate. While
this design may be a better physical
representation o6 the problem, it did not
have the advantage of previous use to refine
and correct any possible problems. No Ada"
code was available for reuse but several

FORTRAN routines were used by the Ada team.
These comprised only about 2% of the code.

Keeping in mind these differences in
the actual projects, we will discuss some
interesting FORTRAN/Ada comparisons.

I.I Size of Ada project is larger than
FORTRAN project.

As mentioned in the background section,
a simple count of the number of lines of
code, including every line of any type as a
line, yields a count of 135,000 source lines
of code for the Ada project and a count of
45,500 source lines of code for the FORTRAN
project. These figures are really a little
misleading, since the Ada llne count
includes 23,000 lines of blank lines which

are inserted for readability. Also, the Ada
count includes 49,000 lines of comments
compared to 19,500 lines of comments in the
FORTRAN count. When the number of executable
lines of code are compared, we find that the
Ada project has 63,000 lines of executable
code compared to 25,500 for the FORTRAN
project.

In these particular projects, there
were other reasons why the Ada project was
larger. As we mentioned earlier, the Ada
project was not constrained by schedule
pressure and so they developed a system with"
more functionality--a system with more of
the "nice to have, but not required"
features. Naturally this increased the size
of the system. To some extent, the Ada
language itself was a driving factor for the
size difference, since it requires more code
to write such constructs as package
specifications, declarations, etc. In
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addition, the Ada team used a style guide
[3] that required certain constructs to be
spread over several lines of code for

readability.

Another interesting way to compare the
size of the two projects is to examine the
size of the load modules For each one. This

also shows the Ada system to be larger-
occupying 2300 512-byte blocks, compared to
953 512-byte blocks for the FORTRAN load
module.

1.2 Project cost is similar for the two
implementations.

One of the problems with trying to
compute productivity is tha_t there are
many ways to compute it. Usually, in the
Software Engineering Laboratory, the
calculation is made by taking the total
number of source lines of code developed and
dividing by the number of hours spent on the
project. The number of hours is carefully
recorded on forms weekly and includes the
hours spent on all phases of the project
beginning with requirements analysis and
ending with the completion of acceptance
testing. In order to compare the FORTRAN and
Ada projects, the calculations were made
using the number of hours spent on each
project from requirements anaT)_sis tO the
completion of system testing since
acceptance testing has not yet been
completed on the Ada system. As we see in
figure I, using the total number of source
lines of code (SLOC) for each project, we
get a productivity of 3.8 SLOC/hr. for the

FORTRAN project and a productivity of 6.1
SLOC/hr. for the Aria project. Rememberin(
that the Ada code included many blank linei
of code that were not included in th(

FORTRAN line count, We recompu_ed the Ad_
figure, excluding the blank lines and got
productivity of 5.2 SLOC/hr. When w(
considered the effort required. Just tc
develop new lines of code and not the
reusable code, the figures are 2.7 SLOC/hr.
for FORTRAN and 6.1 SLOC/hr. for Ada with
blanks and 5.0 SLOC/hr. without blanks. This
would seem to imply that Ada is more
productive, but we must remember that it

took many more lines of code to develop the
Ada system and that the style guide caused
many Ada constructs to be spread over
several lines.

Let's look at the figures when we
consider only executable lines of code.
Using only the number of lines of code which
are executable, we got a productivity figure
of 2.14 SLOC/hr. For the FORTRAN project and
2.8 SLOC/hr. for the Ada project. When we
considered that many of the Ada constructs
use more than one line, we looked at the
nuTnber of executable statements "(or
semicolons) in the Ada project and
recomputed productivity. Similarly For the
FORTRAN, we counted statements and their
continuations as one executable statement.

Now we get a productivity of 1.85 SLOC/hr.
for the FORTRAN project and .96 SLOC/hr. For
the Ada project. Looking at the number of
executable new statements in the FORTRAN

yields a Figure of 1.2 SLOC/hr. compared to
.95 SLOC/hr. for the Ada project. These
calculations would make FORTRAN look more

productive.

Lines Of Code Lines of Code

Used for Computation Productivity Used for Computation Productivity

Total lines of code 3.8 SLOC/hr Total lines of Code 6.17 SLOC/h¢"
Total lines of code Total lines of code

excluding blanks 3.8 SLOC/hr excluding blanks 5.12 SLOC/hr
Executable lines

ofcode 2.14 SLOC/hr

: Ada :

Executable lines

of code 2.8 SLOC/bx

New linesofcode 2.7 SLOC/hr _New linesofcode 6.08 SLOO/hr

New linesofcode New linesofcode

excludingblanks 2.7SLOC/hr excLudingblanks 5.03 SLOC/hr

Executable statements 1.85SLOC/hr Executable statements 0.96 SLOC/hr

Executable _new" Executable _new _

statements 1.2SLOC/hr statements 0.95 SLOC/bx

Figure 1: Productivity Comparisons
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Perhaps a better way of viewing the
productivity problem is to examine it from
the standpoint of cost to produce the
product. The total cost of the FORTRAN
project from requirements analysis through
acceptance testing was about 8.5 man-years
of effort. The Ada project cost, using
actual figures from requirements analysis
through system testing and estimating the
acceptance testing cost, is around 12 man-
years of effort. When we take into
consideration the percentage of reused code
in the FORTRAN project and assume all the
code generated was new code,it would have
taken about 11.5 man-years of effort to
develop the FORTRAN system. This makes the
cost of developing the two systems roughly
the same. especially when we consider that
the Ada project was a "first-time" project
and that the Ada project had slightly more
functionality than the FORTRAN.

1.3 Error types found in both projects
show similar profiles.

Detailed information was kept on the
types of errors found in both projects and
based on 104 forms collected for the FORTRAN
project and 174 forms collected for the Ada

project, the error types show a similar
profile. Figure 2 shows the distribution of
error types for each project.

Error l_Jpe" FORTRAN _ Ada c

% %
Computational 12 9

Initialization 15 16

Data Value or

Structure 24 28

Logic/Control
Structure 16 19

Internal Interface 29 22

External Interface 4 6

"There may be more than one error reported on • form.
s104 formJ

c174 forms

Figure 2: Error Profile

An example of a _omputational error
might be an error in a mathematical

expression. An error like using the wrong
variable would Eave been classified as data
value or structure error. Internal interface
errors refer to errors in module to module
communication, while external interface
errors refer to errors in module to external
communications.

Perhaps one result here that is
suprising is that the team expected to have
fewer internal interface errors with Ada,
but the percentage is not significantly
different from the FORTRAN. When the
detailed information on the Ada errors was

examined, we learned that many of the errors
classified as internal interface errors were

caused by a type change of some sort. For
example, a variable may have been classified
as one type in one portion of the code and
different type in another, or the original
type chosen for a variable might not have
been suitable. Another common reason that

internal interfaces were changed was that a
new function was added to the module which
required an interface change. Also, in some
cases, a developer would find he needed
another variable from some other module

which he did not originally think he needed.

1.4 The percentage of "very easy to
find" errors was less in the Ada project
than the FORTRAN project.

Detailed information was captured on
the effort required to isolate errors .The
error levels were categorized a) very easy
or less than one hour b) easy or one hour to
one day c) hard or one to three days
d) very hard or more than three days. The
FORTRAN team found that 81% of their error_"

were in the "very easy" to isolate category.
In comparison, the Ada team found only 59_,
of their errors in that category. There are
several possible explanations for this.
First, many of the errors found by th_
FORTRAN team were types of errors which
would have been identified by a mot;
rigorous compiler such as the Ada compiler
Throughout the project, the Ada team fel'.
that the compiler was one of the most usef_
tools because it was able to pinpoint man;,'
errors at the early stage of compilation.
Another possible explanation for the
difference in effort to locate errors is the

difference in experience of the teams with
the language. The Ada team was not
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experienced in Ada.and did not feel they had
the same intuition as the FORTRAN team did
to aid in isolating errors.

2. MAJOR LESSONS LEARNED DURING
INPLEHENTATION OF THE Ada PROJECT

2.1A flat structure usually has more
advantages than a nested structure. Thus,
nesting should be used sparingly.

The object oriented design used by the
team [9] seemed to promote a nested
structure for information hiding purposes.
While the nesting was not explicitly
specified in the design, it seemed to be a
natural manifestation of the object oriented
design--so the parts of.an object or a
package would be tncluded inside that
package instead of being called in from the
outside. The team felt that they were
implementing nesting conservatively, and
indeed, one view of the system shows that it
has 124 packages of which 55 are library
units. However, the nesting in the system
was extensive--many levels deep in some
places.

This amount of nesting caused many
problems for the Ada developers. First,
nesting increased the amount of
recompilation necessary during
implementation and testing. Many more units

• had to be recompiled when changes were made
to the system since Ada assumes dependencies
between nested obje_ or procedures even
when there are none. Since compilation is a
lengthy process, this slowed down the
development process. Much unneccessary
recompilation could have been avoided by the
use of more library units.

Second, nesting increased the difficulty
of unit testing. In fact, the greater the
level of nesting, the more difficult the
unit testing was. The lower level units were
not in the scope of the test driver, and a
debugger was necessary to "see" into these
lower level units. For the purposes of unit
testing in FORTRAN, a unit is defined as a
subprogram. When this same definition was
applied to the Ada, unit testing
difficulties arose since many of these units
could not be tested in isolation. Instead,
tt was necessary to integrate units_h_h
fit logically together, usually integrating
up to the package level, before testing was
done. Nesting also increased the difficulty

of tracing problems since tt ts'hard t
identify the calling module of a neste
unit.

2.2 A high degree of nesting was foun
to be an impediment for reuse.

Perhaps the major advantage of usin
library units instead of nested units I
that their use increases the potential o
reusability. When nesting is used, the siz
of the compilation units, the componen
sizes and the file sizes all tend to b

larger. Thus when these larger units ar,
examined for potential reuse, it is mucl
more likely that only a portion of the larg,
unit will actually have the code whicl
performs the needed funct)9 p for the net
system. Then it becomes necessary to unnesi
the code before reuse is possible. Thi:
unnesting is very labor intensive.

Another similar Acla project presentlb
under development in the SEL has examinee
this project's code for reuse and has fount
that it could use as much as 40% of th(

original code. However, it was necessary tc
unnest all of this c0de before reuse. This
use of library units would have enabled the

second project to reuse the code directly,

2.3 "Call-through" units are not an
efficient way to implement an object-
oriented design.

"_al_-throughS" are procedures whose
only function is to call another routine.

These were used to group appropriate modules
exactly as they were represented in the
design so that a physical module of code was
created for every object in the design.
Thus, when objects were nested inside
objects, a "call-through" was us_i:l_o get to
the inner object. Implementation of "call-

through" units could be accomplished using
either nested or library units. This
practice resulted in additional code which
increased the system size and testing
complexity. This unneccessary code could
have been eliminated if some of the objects
in the design were left as logical objects,
rather than coding every object in the
design to preserve the exact design
structure.
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2.4 An abstract data type analysis
should be incorporated into the design
process to control types.

Since the Ada team was not previously
experienced tn Ada, it took time to get
accustomed to the strong typing of Ada. The
tendency was to create too many types. A
type would be created with a strict range
for a particular portion of the application.
Then other areas of the application would
need a similar type, but the original one
would be too restrictive. So another type

was created, along with a corresponding set
of operations. Some of the difficulty with
this method of typing began to emerge during
critical design,--where-interface problems
developed due to typing differences.

Multiple types also increased the
difficulty of testing modules. Test drivers
needed to be larger to handle multiple types
and were often coded as large "case"
statements in order to provide a testing
capability for each type.

A recommendation for future Ada
developments is to incorporate an abstract
data type analysis into the design process
to control the generation of types. A more
general new type would be defined, then many
subtypes of that type could be used In
various sections of the application. This
type analysis would provide the following
advantages: 1) operations would be reused,
2) there would be fewer main types to
manage, and 3) families of types would be
developed that would inherit properties from
each other.

SUMMARY

In spite of a lack of experience in Ada
at the beginning of the project, the Ada
team was able to develop a very suitable
dynamics simulator In Ada which meets the
requirements originally developed for the
FORTRAN development effort. The overall cost
of the projects appears to be similar and
early indications of reuse potential in the
Ada project are very encouraging. Most of
the problems encountered by the Ada team are
surmountable. Many are either caused by a
lack of experience with Ada or an immaturity
of the tools. Both of these problems will be
resolved in time.

There are stlll many unanswered
questions to be considered on thls project--
for example, nothing at all has been

mentioned about maintainability, rellabllil
or performance. It is still too early t
look at these results on this project, but
research efforts are continuing on thi

project and several other Ada project in th
SEL. Hopefully, these efforts will provid
even more answers about the use Ada in th
future.
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Abstract

The effective use of Ada requires the adoption of
modern software-engineering techniques such as
object-oriented methodologies. A Goddard Space
Flight Center Software Engineering Laboratory Ada
pilot project has provided an opportunity for studying
object-oriented design in Ada. The project involves
the development of a simulation system in Ada in
parallel with a similar FORTRAN development. As
part of the project, the Ada development team
trained and evaluated object-oriented and process-
oriented design methodologies for Ada.

In object-oriented software engineering, the software
developer attempts to model entities in the problem
domain and how they interact. Most previous work
on object-oriented methods has concentrated on using
object-oriented ideas in software design and
implementation. However, we have also found that

object-oriented concepts can be used advantageously
throughout the entire Ada software life-cycle. This
paper provides a distillation of our experiences with
object-oriented software development. It considers
the use of entity-relationship and process/data-flow
techniques for an object-oriented specification which
leads smoothly into our design and implementation
methods, as well as an object-oriented approach to
reusability in Ada.

1. Introduction

Increased productivity and reliability from using Ada
must come from innovative application of the non-
traditional features of the language. However, past
experience has shown that traditional development
methodologies result in Ada systems that "look like a
FORTRAN design" (see, for example, [Basili 85]).
Object-oriented techniques provide an alternative

approach to effective use of Ada. . As the name
indicates, the primary modules of an object-oriented
design are objects rather than traditional functional
procedures. Whereas a procedure models an action,
an object models some entity in the problem domain,
encapsulating both data about that entity and
operations on that data. Ada is especially suited to
this type of design because its package facility
directly supports the construction of objects.

The Goddard Space Flight Center Software.
Engineering Laboratory is currently involved in an
Ada pilot project to develop a system of about 60,000
lines (20,000 statements) [Nelson 86, McGarry 88].
This project has provided an opportunity to explore
object-oriented software development methods for
Ada. The pilot system, known as "GRODY", is an
attitude dynamics simulator for the Gamma Ray
Observatory (GRO) spacecraft and is based on the
same requirements as a FORTRAN system being
developed in parallel.

The GRODY team was initially trained both in the
Ada language and in Ada-oriented design
methodologies. The team specifically studied the
methodology promoted by Grady Booch [Booch 83]

TM
and the PAMELA methodology of George Cherry
[Cherry 85]. Following this, during a training
exercise, the team also began synthesizing a more
general approach to object-oriented design. At an
early stage of the GRODY development effort, the
team produced high-level designs for GRODY using
each of these methodologies. Section 2 summarizes
the comparison of methodologies made by the
GRODY team.

PAMELA is a registered trademark of George W. Cherry.
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Unfortunately, the system requirements given to our
team were highly biased by past FORTRAN designs
and implementations of similar systems. Therefore
we began by recasting the requirements in a more
language-independent way using the "Composite
Specification Model = [Agresti 84, Agresti 87]. This
method involves the use of state transition and entity-
relationship techniques as well as more traditional
data flow diagrams. We then designed the system to
meet this specification, using object-oriented

principles. The resulting design is, we believe, an
improvement over the previous FORTRAN designs
[Agresti 86]. The system is currently in final system
testing.

Previous work by the present authors has
concentrated on using object-oriented ideas in
software design and implementation. This work
resulted in a design method which synthesizes the best
methods studied during the GRODY project
[Seidewitz 86a, Seidewitz 86b]. However, we have
found that object-oriented concepts can be used
advantageously throughout the entire Ada software
life-cycle [Stark 87]. Section 3 provides a distillation
of our experience with GRODY and other Ada
projects into an evolving life-cycle methodology.

2. Comparison of Methodologies

This section presents a comparison of design
approaches to the GRO dynamics simulator, including
the traditional functional approach usedf0r the
FORTRAN version, the Booch methodology,
PAMELA and the general methodology developed by
the team itself. It should be noted that the GRODY
team was trained in the Booch and PAMELA

methodologies in early 1985. Since then, both
methodologies have evolved considerably, in many
cases addressing in different ways the very issues that
led us to develop our methodology. Nevertheless, as
background motivation for tlae direction taken by the
GRODY team, the comparison in this section is in
terms of the 1985 versions of the methodologies.

Li F_netional Desiun

The design of the FORTRAN version of the
simulator is functionally-oriented. This de s!g_n_has a
strong heritage in previous simulator and ground
support systems. It consists of three major subsystems
which interact as shown in figure 1. The "TRUTH
MODEL" subsystem includes models of the spacecraft

Software Development with Ada

hardware, the external environment and the attitude
dynamics; that is, the "real world" as opposed to the
spacecraft control system. The SIMULATION
CONTROL subsystem alternatively activates the
SPACECRAFT CONTROL and TRUTH MODEL
subsystems in a cyclic fashion. Each subsystem
consists of a single driver subroutine which calls on a
hierarchy of lower-level subroutines to perform the
functions of the subsystem when activated by
SIMULATION CONTROL. Data flow between
subsystems, as well as system parameterization, is
entirely though a set of global COMMON areas.

f ]
SIMULATION

CONTROL

FIGURE 1 FORTRAN Simulator Functional Desig_

The strengths of this functional design lay in its
relatively simple structure and direct implementation
in FORTRAN. However, its main drawback is the
complete lack of encapsulation of global data. The
only restrictions on which code may access which
global data are enforced by programmer discipline.
This can lead, intentionally or not, to illicit
corruption of global data by code in one part of the
system which is unexPeCted: by another part of the
system. Further, most simulation parameters are
hard-coded into the global common area, making the
user interface for the system hard to modify and
impossible to generalize.
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2_2 Booth's Methodology

Grady Booch is, perhaps, the most influential
advocate of object-oriented design in the Ada
community [Booth 86b, Booth 87]. As learned by the
GRODY team, Booth's methodology derives a design
from a textual specification or informal design
[Booch 83], an approach adopted from Abbott
[Abbott 83]. The technique is to underline all the
nouns and verbs in the specification. The objects in

the design derive from the nouns; object operations
derive from the verbs. Obviously, some judgment
must be used to disregard irrelevant nouns and verbs
and to translate the remainingconcepts into design

objects. Once the objects have been identified, the
design can then be represented diagrammatically
using a notation which shows the dependencies
between Ada packages and tasks which implement the
objects. Figure 2 shows such a diagrammatic top-
level design for GRODY.

¢
wN

FIGURE 2 Object-Oriented Simulator Design
( Booch Methodology)

The Booch design methodology contains all the basic
framework of the object-oriented approach.
However, application of this methodology to GRODY
indicated that it was not readily applicable to sizable
systems. The team found the graphical notation clear
but not detailed or rigorous enough. Further, Booch
gives no explicit method for diagramming a
hierarchical decomposition of objects, which is
needed for any sizable system. Booth's notation does
not, therefore, seem to be a complete design notation.

Note, however, that in more recent work Booth has
extended the scope of the notation to address some of
these shortcomings [Booth 87].

A second difficulty of Booth's methodology is in the
technique for deriving the design from the
specification text. This works well when the
specification can be written concisely in a few
paragraphs. However, when the system requirements
are large, as with GRODY, this can be difficult. In
addition, any attempt to use such a technique directly
on a requirements document such as ours is doomed
to failure due to the sheer size and complexity of the
document. Realizing such drawbacks, Booth no
longer advocates the use of this textual method,
which was never actually intended for large systems
development [Booth 86b]. Instead, he derives an
object-oriented design from a data flow diagram
based specification [Booch g6a, Booch 87]. However,
from the published examples it is still unclear how to
systematically apply this method to realistic systems.

2.3 PAMELA

The second methodology considered by the GRODY
team was the Process Abstraction Method for
Embedded Large Applications (PAMELA) developed
by George Cherry [Cherry 85, Cherry 86]. PAMELA
is oriented toward real-time and embedded systems.
PAMELA is process-oriented, so a PAMELA design
consists of a set of interacting concurrent processes.
A well designed process is effectively a concurrent
object, thus PAMELA is object-oriented in a general
way.

PAMEEA uses a powerful graphical notation wiihout
many of the drawbacks found in Booch's notation
[Cherry 86]. During the PAMELA design processes,
the designer successively decomposes processes into
concurrent subprocesses until he reaches the level of
primitive single-thread processes. The GRODY team
found that PAMELA provides fairly explicit
heuristics for constructing good processes. The
designer uses these hints to construct the top-level
processes from the system specification. The designer
then recursively decomposes each non-primitive
processes until only primitive processes remain. The
primitive processes can then be coded as Ada tasks
with a single thread of control. Non-primitive
processes are simply packages of lower level processes
and thus contain multiple threads of control. Figure
3 shows the top levels of a PAMELA design for
GRODY.
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update of PAMELA known as "PAMELA 2" which is
now explicitly object-oriented [Cherry 88]. In fact,
PAMELA now stands for "Pictorial Ada Method for
Every :Larg_e - Ai_plication." It is stiii to early,
however, to evaluate the generality o£ PAMELA 2 as
an object-oriented methodology.

2.3 General 0biect-0riented Development

As a result of the above experiences, the GRODY
team developed its own object-oriented methodology
which attempts to capture the best points of the
object-oriented approaches studied by the team as
well as traditional structured methodologies
[Seidewitz 86a, Seidewitz g6b, Stark 87]. It is
designed to be quite general, giving the designer the
flexibility to explore design alternatives easily. It is
also based on principles that guide the designer in
constructing good object-oriented designs. This
methodology was used to develop the complete
detailed design for GRODY.

FIGURE 3 PAMELA Simulator Design

PAMELA's heuristics can be very effective when

designing a real-time system that is heavily driven by
external asynchronous actions, in Other cases,
however, they require considerable interpretation to

be applicable. Al.though parts of GRODY might
conceptually be concurrent (because GRODY
simulates actions that happen in parallel in the real
world), there is no requirement for concurrency in
the simulation of these actions because GRODY does

not have to interface with any active external entity
(except the user). In addition, since GRODY runs on
a sequential machine, the overhead of Ada tasking
and rendezvous could greatly degrade the time
performance of the system. Thus, one interpretation
of PAMELA's principles might leave very large
sections of GRODY as primitive single-thread
processes, with only a few concurrent objects in the
entire design. -To proceed further in the
decomposition, the designer has to rely more on
intuition about what makes a good object and rely

This general object-oriented development ("GOOD").
methodology is based on general principles of
abstraction, information hiding and design hierarchy
discussed in the next section. These principles are
less explicit thanBboch's methodology or PAMELA,
but they do provide a firm paradigm for generating
and evaluating an object-oriented design. Indeed, as
mentione_:abdve, the team £dund _fhe Booch and
PAMELA _ design:construCtion techniques restrictive,
often necessitating the designer to rely on intuition
for object-oriented design. The GOOD methodology
is an attempt to codify this intuition into a basic set
of principles that provide guidance while leaving the
designer the flexibility to explore various design
approaches.

In addition, we have also considered, independently
of Booth, the transition from structured analysis
[DeMarco 79] to object-oriented design in the context
of the GO_ methodology, °developing a technique
known as abstraction analysis [Seidewitz 86a,
Seidewitz 86b]. This technique is analogous to

less on the methodology.

In fact, at the time that the GRODY team was using
PAMELA, it provided no support for the
decomposition and design of anythin_g below the level
of the primitive process, an Ada task [Cherry 85].
Since then, Cherry has added several concepts to the
methodology, including the use of abstract data types
[Cherry 861.- Recently he has introduced a major

transform and transaction analysis used in structured
design [Yourdon 78]. However, proceeding into
object-oriented design from a structured analysis, by
whatever means, requires an "extraction" of problem
domain entities from traditional data flow diagrams.
From an object-oriented Viewpoint, it seems
appropriate to instead begin a specification effort by
identifying the entities in a problem domain and their
interrelationships. Study is continuing on including

4
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such object-oriented system specification techniques
in the GOOD methodology and on applying object-
oriented principles throughout the Ada life cycle
[Stark 87]. Section 3 will discuss this in more detail.

Figure 4 shows the actual design of the main part of
GRODY. The object diagram notation

[Seidewitz 86b] used in figure 4 shows the
dependencies between the various objects which make
up a system design, in a manner similar to Beech's
diagrams. However, the object diagram notation also
explicitly includes the idea of leveled composition of
objects, like the PAMELA process graph notation.
Moreover, as will be discussed in' more detail in
section 3, the designer may use object diagrams to
express the design from the highest levels all the way
down to the procedural level. (This capability has
also been added to PAMELA 2 [Cherry 88].)

Since GRODY was derived from the same basic

requirements as the FORTRAN design, there are
similarities in the designs of the two systems.
However, there are also some fundamental differences
in the GRODY design that can be traced to the
object-oriented methodology. For example, in
GRODY the TRUTH MODEL is effectively passive,
with the SPACECRAFT CONTROL calling on
operations as needed to obtain sensor data and
activate actuators. All sensor and command data is
passed using these operations. This design approach
was encouraged by viewing the TRUTH MODEL as
an object with multiple operations rather than as a
functional subsystem with a single driver.

The simulation timing of GRODY is also different
from the FORTRAN design. The object-oriented
methodology led to consideration of a "TIMER"
object in GRODY which provides an abstraction of
the simulation time. This utility object provides a
common time reference for the SPACECRAFT

CONTROL and TRUTH MODEL separate from the
SIMULATION CONTROL loop. Unlike the
FORTRAN design, in GRODY the "cycle times" of
the SPACECRAFT CONTROL and TRUTH MODEL
are not the same. The GRODY team chose to

faithfully model, in the SPACECRAFT CONTROL
abstraction, the timing of the actual spacecraft control
software, which is not under user control. However,
GRODY allows the simulation user to set the cycIe
time for the TRUTH MODEL over a fairly wide
range, to allow the user to trade-off speed and
accuracy as desired.

f---q
SIMULATION

CONTROl.

FIGURE 4 Object-Oriented Simulator Design
(GOOD Methodology)

Finally, the PARAMETER DATABASE and
GROUND COMMAND DATABASE objects
encapsulate user settable parameters for the
simulation. Similar data is contained in COMMON

blocks in the FORTRAN design. This encapsulation
of "global" data is typical of object-oriented designs.
It provides both increased protection of the data
encapsulated and increased opportunity for reuse. For
example, the simulation parameters in the FORTRAN
design are COMMON block parameters which must
be hard-coded into the user interface code. (For
simplicity the user interface modules have 'not been
included in figure 4.) In the GRODY des'ign,
simulation parameters are identified by enumeration
constants, which allows the user interface displays to
be parameterized by external data files. This should
greatly increase the reusability of the user interface.

The differences discussed above could probably have
been incorporated into the FORTRAN design.
However, it was largely the influence of the object-
oriented approach which lead to their consideration
for GRODY when they had not been considered in
several previous designs of simulators for FORTRAN.
Considerations of encapsulation and reusability
indicate that the GRODY design may be "better" than
the FORTRAN design. This is, of course, the goal of
object-oriented methods. However, the true test of
the merits of the GRODY design will only come from
continuing studies of the comparative maintainability
of the FORTRAN and Ada simulators.
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In terms of the methodology itself, the team found
the object diagram notation extremely useful for
discussing the design during developmenL Further,
the notation provided complete documentation of the
design and was tailored specifically towards Ada. This
made the transition to coding very smooth, and
allowed the documentation to be readily updated as

coding proceeded. By the end of coding, there were
no major changes in the design and most changes that
did occur were additions rather than alterations.

The object diagram notation evolved considerably
during the GRODY project in response to continuing
experience with its use. The lack of a specific
methodology at the start of the GRODY project was a
problem for the team, as was the continuing evolution
of the methodology over the duration of the project.
Further, the fact that managers were not familiar
with the new methodology made the use of object
diagrams difficult at reviews. Another problem was
that the detail of the object diagrams and the
emphasis on keeping the documentation up-to-date
required a great deal of effort to maintain a rather
large design notebook. The team clearly saw the great
need for automated tools to support the methodology
in this area. Consideration has also been given to
extend the object diagram notation to better cover
such topics as generics, abstract data types and large
system components.

3. The GOOD Methodology

Section 2 described the background motivation of the
GRODY team in developing the GOOD methodology
and applying it to the full GRODY design. The
experience with the Composite Specification Model
and object-oriented design on GRODY, as well as
experience on other Ada projects, has led to the
continuing evolution of a comprehensive, integrated,
object-oriented approach to software development,
encompassing all phases of the software life cycle.
This section provides an overview of the current
GOOD life cycle approach.

3.1 Entities and Relationshivs

The modules of an object-oriented design are
intended to primarily represent problem domain
entities. From an object-oriented viewpoint, it seems
appropriate to begin a software specification effort by
identifying the entities in a problem domain and their
interrelationships. Entity-relationships and data fl0w

techniques can then complement each other, the
former delineating the static structure problem
domain and the latter defining the dynamic function
of a system.--'i_is is similar to the "contextual" and
"functional" views of the Composite Specification
Model [Agresti 84, Agresti 87]. A close relation to the
specification approach discussed here is described in
some detail in [Bailin 88].

An entity is some individual item of interest in the
problem domain. For example, consider the
specification, of GRODY. Several problem domain
entities immediately come to mind: the spacecraft
structure, sensors and thrusters on the spacecraft, the
environment, etc. An entity is described in terms of
the relationships into which it enters other objects. A
spacecraft might be in a certain orientation, have
certain thrusters; etc. Entities can also have
attributes, such as spacecraft mass, which are data
items describing the intrinsic properties of the entity.

To model the structure of the problem domain
requires the identification of entity types which are
groups of entities with the same types of attributes
and relationships. For example, we may define a
SPACECRAFT STRUCTURE e_ntity type with
SPACEC/_AFT MASS and DRAG COEFFICIENT
attributes. All SPACECRAFT STRUCTURE entities
have these attributes, but different individual entities
have different specific values for the attributes.

A problem domain model must also include a
specification of all possible relationships between
various types of entities. These relationships may
themselves have attributes and enter into other

relationships. For example, the ATTITUDE STATE
of a spacecraft describes its current orientation
relative to inertial space and its current rotational
motion. The ATTITUDE STATE is effectively a
relationship between the spacecraft, the environment
and the effect of any thruster firings used to reorient
the spacecraft. This relationship has such attributes
as the current spacecraft orientation and the
spacecraft angular rotation rates.

The entity-relationship diagram (ERD) is a common
graphical tool for entity-oriented specification
[Chert 76]. Figure 5 shows an ERD for the GRODY
prob_lem domain, oThe notatio n_for this diagram is
based on [Ward 85]. Complex relationships such as
ATTITUDE STATE are shown as associative entities
on ERDs such as figure 5. Associative entities can be
identified on an ERD by being .connected to a
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relationship symbol by an arrow. Associative entities
are "objectivizations" of relationships which may have
attributes and enter into other relationships.

SENSORS CAUII MA_nON
pARAII ETIUm

•..omr.F7 .o.o jy
• ALIamlEIMT • a_Vlff_ C_ST_T

j S,P4¢ECmlFT W_Sll

ASSOCIATlYE _ , OMAG CoF.._ll_
ENTITY

• AT'r RIll UTE

FIGURE 5 Attitude Dynamics Entity-Relationship
Diagram

Figure 5 shows only a small part of the example
problem domain. It would grow as additional entities
and relationships are added to describe additional
parts of the problem domain. As the specification
grows, a complete ERD can quickly become
cumbersome. It is possible to "level" ERDS showing
complex entities on high-level diagrams which enter
into composite relationships. These are then broken
down in lower-level diagrams. An extended data
dictionary notation is also useful as a textual
representation of entity type and relationship
definitions. In addition, the data dictionary provides
a common basis for data definition between the static
and the dynamic views of the problem domain.

3,2 Processes and Data Flow

ERDs show all possible relationships between
different types of entities. They do not show the
actual relationships between specific entities at
specific points in time, nor how these actual
relationships change over time. Data flow techniques,

however, provide exactly this dynamic view.
Traditional data flow diagrams (DFDs) show the flow
of data between functional transformations. We will,
instead, diagram the flow of data between processes
which represent the dynamic view of one or. more
entities in the problem domain. A process is
effectively a state machine which accepts input
stimuli, reacts to it and produces output stimuli,
possibly modifying some internal state data. It has no
"operations" as such, only stimuli and responses.
These stimuli may be either in the form of data flow
or pure control signals.

To construct a dynamics data flow model, one needs

to identify those active entities which have associated
processes. For each relationship in the static entity-
relationship model, we choose one of the related
entity types to be active. This entity type has an
associated process which is charged with maintaining
the state of the relationship in response to internal
and external stimuli. Note that an entity type may be
active relative to one relationship and passive relative
to another, and that associative entities may be active.

or passive.

For example, consider a simplified attitude dynamics
simulation system similar to GRODY. The attitude of .
a spacecraft is its orientation relative to inertial space,
and an attitude dynamics simulator models the
rotational motion of the spacecraft in response to
external disturbances and the spacecraft control

system. Figure 5 describes the problem domain for
such a system. The active entities in this case interact
in a control loop outlined in figure 6. All the
processes shown on figure 6 are associated with active
entities on figure 5. A data item flowing on a
diagram such as figure 6 may be a passive entity, an
attribute or any other composite data item or data
element defined in the data dictionary.

The dynamic model must also provide a specification
for each individual process. This specification should
include a textual description of the object as well as a
listing of all inputs and outputs. The process
specification also provides a place to include "non-
functio.nal" requirements such as timing and accuracy
constraints. However, the main point of a process
specification is to detail the function of the process.
This can be in the form of structured English, a state
transition diagram or some other appropriate notation,
such as differential equations for the time evolution
of the spacecraft attitude.
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CONTROLt___./
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FIGURE 6 Attitude Dynamics Data Flow Diagram

The function of a process can also be given by a
lower=level data flow diagram. Decomposition can
continue recursively on all diagrams until all processes
have been decomposed into primitive functions and
states. This results in a leveling similar to the
leveling of traditional DFDs. However, unlike DFDs,
each object at each level of a process-data-flow
diagram specification has a complete process
specification. Each process must also be associated a
reasonable problem domain entity independently of
its decomposition.

3.3 Object Identification

The intent of an object is to represent a problem
domain entity and any associated process. The
concept of abstraction deals with how an object
presents this representation to other objects
[Beech 86b, Dijkstra 68]. Ideally, the objects in a
design should directly reflect the problem domain
entities identified during system specification.
However, various design considerations may require
splitting or grouping of objects and there will almost
always be additional objects in a design to handle
"executive" and "utility" functions. Thus there is a
spectrum of levels of abstraction of objects in a
design, from objects which closely model problem
domain entities to objects which really have no reason
for existence [Seidewitz 86b]. The following are some
points in this scale, from strongest to weakest:

Entity Abstraction - An object represents a useful
model of a problem domain entity or class of entities.

: : :+_ 7 -= .......
Action AbstractiOn An object provides a
generalized set of operations which all perform
similar or related functions (this is similar to the idea
of a "utility" object in [Beech 87]).

Subsystem Abstraction - An object groups together a
set of objects and operations which are all related to a
specific part of a larger system (this is similar to the
"subsystem" concept in [Beech 87]).

The stronger the abstraction of an object, the more
details aid Sfi-pp_6ssed by the abstract concept. The
principle of information hiding states that such details
should be kept secret from other objects [Beech 87,
Parnas 79], so as to better preserve the abstraction
modeled by the object.

3.4 Design Hierarchies

The principles of abstraction and information hiding
provide the main guides for creating *good" objects.
These objects must then be connected together to
form an object-oriented design. This design is
represented using the graphical object diagram
notation [Seidewitz 86b].

The construction of an object-diagram-based design
is mediated by consideration of two orthogonat
hierarchies in software system designs [Rajlich 85].
The composition hierarchy deals with the composition
of larger objects from smaller component objects. The
seniority hierarchy deals with the organization of a set
of objects into "layers". Each layer defines a virtual
language extension which provides services to senior
layers [Dijkstra 68]. A major strength of object
diagrams is that they can distinctly represent these
hierarchies.

The composition hierarchy is directly expressed by
leveling object diagrams (see figure 7). At its top
level, any complete system may be represented by a
single object which interacts with external objects.
Beginning at this system level, each object can then
be refined into component objects on a lower-level
object diagram, designed to meet the specification for
the object. The result is a leveled set of object
diagrams which completely describe the structure of a
system. At the lowest level, objects are completely
decomposed into primitive objects such as procedures,
tasks and internal state data stores. At higher levels,
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object diagram leveling can be used in a manner
similar to Booch's "subsystems" [Booch 87].

COMPONE i

FIGURE 7 Composition Hierarchy

The seniority" hierarchy is expressed by the topology
of connections on a single object diagram (see figure
8). An arrow between objects indicates that one
object calls one or more of the operations provided by
another object. Any layer in a seniority hierarchy
can call on any operation in junior layers, but never
any operation in a senior layer. Thus, all cyclic
relationships between objects must be contained
within a virtual language layer. Object diagrams are
drawn with the seniority hierarchy shown vertically.
Each senior object can be designed as if the
operations provided by junior laye_ were "primitive
operations" in an extended language. Each virtual
language layer will generally contain several objects,
each designed according to the principles of
abstraction and information hiding.

3.5 System Design

The main advantage of a seniority hierarchy is that it
reduces the coupling between objects. This is because
all objects in one virtual language layer need to know
nothing about senior layers. Further, the
centralization of the procedural and data flow control
in senior objects can make a system easier to
understand and modify.

iiii
2

FIGURE 8 Seniority Hierarchy

However, this very centralization can cause a messy
bottleneck. In such cases, the complexity of senior
levels can be traded off against the coupling of junior
levels. The important point is that the strength of the
seniority hierarchy in a design can be chosen from a
spectrum of possibilities, with the best design
generally lying between the extremes. This gives the
designer great power and flexibility in adapting
system designs to specific applications.

Figure 9 shows one possible preliminary design for
the ATTITUDE SIMULATOR. For simplicity, the
sensors and thrusters are represented by a single
"SPACECRAFT HARDWARE" object in figure 9.
Note that, by convention, the arrow labeled "RUN" is
the initial invocation of the entire system. In
preliminary design diagrams such as figure 4, it is
sometimes convenient to show what data flows along
certain control arrows, much in the manner of
structure charts [Yourdon 78] or "Buhr charts"
[Buhr 84]. These annotation.s will not appear on the
final object diagrams.

In figure 9, the junior level components do not
interact directly. All data flow between junior level
objects must pass through the senior object, though
each object still receives and produces all necessary
data (for simplicity not all data flow is shown in
figure 9). This design is somewhat like an object-
oriented version of the structured designs of ¥ourdon

and Constantine [Yourdon 78].
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We can even remove the senior object completely by
distributing control among the junior level objects
(see figure 11). The splitting of the RUN control
arrow in figure 11 means that the three objects are
activated simultaneously and that they run
concurrently. The seniority hierarchy has collapsed,
leaving a homologous or non-hierarchical design
[Yourdon 78] (no seniority hie-archy, that is; the
composition hierarchy still remains).

A design which is decentralized like figure 11 at all
composition levels isv--cry simi-lar to what would be
produced by the PAMELA methodology [Cherry 86].
In fact, it should be possible to apply PAMELA
design criteria to the upper levels of an object
diagram based design of a h]ghly ¢0neurrent system.
All concurrent objects would then be composed, at a
certain level, of objects representing certain process
"idioms" [Cherry _6]. Below this level concurrency
would generally no longer be advantageous.
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FIGURE 9 Centralized Design

We can remove the data flow control from the senior

object and let the junior objects pass data directly
between themselves, using operations within the
virtual language layer (see figure 10). The senior
object has been reduced to simply activating various
operations in the virtual machine layer, with very
little data flow.

RESUV_J

SIMULATION _
CONTROL

l ]
ATTITUDE m' _ _,

I l- ':_-'-_"i_ I l" a'--'--'-'_ L I
ATTITUDE _ SENSOR

STATE DATA I

aRou.otl+I

FIGURE 10 Design with Decentralized Data Flow

RUN

STATE

I ATTITUDE

STATE

1 l
, _'IRUSTER _n4RUSTER

TORQUE /_ COMMAND

/-"_ I 1.4-------0 I I

UDE _ SPACECRAFT" P,PACECRAFT

kllCSl_ HARDWARE ,I CONTROL

i- o_.---,_ i l- o-----_ | /
ATTITUDE _ SENSOR _-

DATA

TELEMETHY I

GROU, D I
C OMM_ O

10

FIGURE 11 Decentralized Design

To complete the design, we need toadd a virtual
language layer of utility objects which preserve the
level of abstraction of the problem domain entities. In
the case of the ATTITUDE SIMULATOR these

objects might include VECTOR, MATRIX,
GROUND COMMAND and simulation
PARAMETER types, Figure 12 shows how these
objects might be added to the simulator design of
Figure I0.
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Figure 12 gives one complete level of the design of
the ATTITUDE SIMULATOR. Note that figure 12
does not include the data flow arrows used in earlier

figures. When there are several control paths on a
complicated object diagram, it rapidly becomes
cumbersome to show data flows. Instead, object
descriptions for each object on a diagram provide
details of the data flow.

An object description includes a list of all operations
provided by an object and, for each arrow leaving the
object, a list of operations used from another object.
We can identify the operations provided and used by
each object in terms of the specified data flow and
the designed control flow. The object description can
be produced by matching data flows to operations.
For example, the description for the ATTITUDE
DYNAMICS object in, figure 12 might be:

Provides:
procedure Initialize;
procedure Integrate (For Duration: In DURATION);
procedure Apply (Torque: In VECTOR);
function Current_Attitude return ATTITUDE;
function CurrentAngular__Velocity
return VECTOR;

Uses:

5.0LINEAR ALGEBRA
Add (Vector)
Dot
Multiply (Scalar)
Multiply (Matrix)

6.0 PARAMETER DATABASE
Get

We could next proceed to refine the objects used in
figure 12 and recursively Construct lower level object
diagrams. These lower level designs must meet the
functionality of the system specification and provide
the operations listed in the object description. The
design process continues recursively until the entire
system is designed and all objects are completely
decomposed.

The GRODY design of figure 4 is basically the same
as the example design of figure 12. However, the
GRODY team chose to simplify the design by
combining the ATTITUDE DYNAMICS and
SPACECRAFT HARDWARE objects into a single
TRUTH MODEL subsystem object, similar to the
corresponding subsystem in the FORTRAN design.

Further, in GRODY, the LINEAR ALGEBRA
functions are part of a UTILITIES module not shown
in figure 4.

$1MULA110N

CONTROt D

_1ALQEBRA I DATABASE CG_

FIGURE 12 Attitude Dynamics Simulator Design

3.5 lmolementation

The transition from an object diagram to Ada is
straightforward. Package specifications are derived
from the list of operations provided by an object. For
the ATTITUDE DYNAMICS object the package
specification is:

package AttitudeDynamics is

subtype ATTITUDE is Linear Algebra.MATRIX;

procedure Initialize;
procedure Integrate

( For Duration : in DURATION );
procedure. Apply

( Torque : in Linear Algebra.VECTOR );

function Current Attitude
return ATTITUDE;

function CurrentAngular_Velocity
return Linear Algebra.VECTOR;

end Dynamics;

11
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The package specifications derived from the top level
object diagram can either be made library units or
placed in the declarative part of the top level Ada
procedure. For lower level object ctiagrams the
mapping is similar, with component package
specifications being nested in the package body of the
composite object. States are mapped into package
body variables. This direct mapping produces a highly
nested program structure. Alternatively, some or all
of these packages can be made library units or even
reused from an existing library. However, this may
require additional packages to contain data types and
state variables used by two or more library units.
Nevertheless, experience has shown that, to promote
reusability and reduce the compilation burden, it is

best to avoid nesting of code [Godfrey 87], though it
is important to retain leveling in the design.

The process of transforming object diagrams to Ada
is followed down all the object diagram levels until
we reach the level of implementing individual
subprograms. Low-level subprograms can be designed
aoff:implemented_:_us1=_ng ` tradit]Oh-ffl ° functional
techniques. They should generally be coded as
subunits, rather than being embedded in package
bodies.

The clear definition of abstract interfaces in an
object-oriented design can also greatly simplify
testing. When testing an object, there is a well
defined "virtual language" of operations it requires
from objects at a junior level of abstraction, some of
which may be stubbed-out for initial testing. Further,
object-oriented composition encourages incremental
integration testing, since the "unit testing" of a
composite object really consists of "integration
testing" the component objects at a lower level of
abstraction.

3.7 Reuse

The concept of generic objects provides a powerfui
tool for reusability. Generic parameters may be used
to cut the dependencies of a general object on other
specific objects, allowing the general object to be
reused in similar but different contexts. Consider,
for example, a general numeric integrator with the
following package specification:

12

generic

type REAL is digits o:
type S'I'A'r_ VECTOR is

array (INTEGER range o) of REAL;
with function StateDerivative

( T : DURATION; -- from reference time
X : STATE VECTOR )

return STATEVECTOR;

package Generic Integrator Is

procedure Integrate

( For Duration : In DURATION );
function Current State

return STATEVECTOR;
procedure Initialize .... ;

end Generic_Integrator;

This package provides the ability to numerically
integrate a Vector differential equat_0n w_th an-
arbitrary state vector s|ze. The :_Integr_e'=procedure
can be implemented as a vector equation, or as a set
of individual real-valued functions. To implement it

as a single vector equation we wil! need the
operations provided by a LINEAR ALGEBRA object.
These operations can be incorporated in two ways.
One possibility is to make the operations needed into
generic formal parameters. Another is to have the
body of the integrator depend directly on LINEAR
ALGEBRA.

Each of these methods has advantages and drawbacks.
Using generic formal subprograms enhances
reusability by making the component self-contained,
but if too many are needed the interface becomes
complex. Depending on LINEAR ALGEBRA within
the GENERIC INTEGRATOR makes a cleaner
interface, but couples the generic package to another
library unit. The GRODY team h_: u_gd both
methods. Figure 13 shows the composition of

GENERIC INTEGRATOR assuming the latter choice.

Figure 14 shows a use of the GENERIC
INTEGRATOR in the composition of the
ATTITUDE DYNAMICS object. The component
object ATTITUDE INTEGRATOR is an instantiation
of the GENERIC INTEGRATOR object. The generic
object is instantiated' in figure 14 with the
ATTITUDE EQUATION subprogram as the generic
actual parameter. Most of the ATTITUDE
DYNAMICS operations are shown in figure 14 as
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component procedures, represented by rectangles. The
"Integrate" operation, however, is directly inherited
from the ATTITUDE INTEGRATOR object.

LEGI_IO

OBJECT O

PROCEDURE

STA'rl_ DATA r-'-"

GENERIC FORMAL r------:
SUBPROGRAM "--.---_

CONTROL FLOW

DEPENDENCY WtO .... p.

CONTROL FLOW

Figure 13 Generic I, tegrator Object Composition

Ada features such as generic packages are useful
tools, but language features are not sufficient to
guarantee high levels of software reuse. What is also
needed is an approach to specifying and designing
reusable components. Using an object-oriented
approach is useful not because object-oriented design
is essential for reuse, bu_ because the underlying
concepts are. These crucial concepts are abstraction,
information hiding, levels of virtual languages (often
called virtual "machines') and inheritance [Parnas 79,
Cox 86].

Smalltalk's subclassing [Goldberg 83] provides an
elegant means of supporting inheritance. Ada does not
directly support inheritance, but the concept can be
simulated by using "call-throughs." A call-through is
a subprogram that has little function other than to call
on another package's subprogram. To simulate
inheritance when implementing the
AttitudeDynamics package the subprogram Integrate
would be respecifie d in the Attitude Dynamics
package, with the subprogram body in
AttitudeDynamics calling on the corresponding
operation from Attitude Integrator.

13

$

FIGURE 14 Attitude Dynamics Object Composition

This technique is clearly less elegant than Smalltalk
subclassing, but it also has advantages. First, Ada
allows inheritance from more than one object.
Second, Smalltalk forces the inheritance of all
operations and data. An operation can be overridden,
but not removed, from a class. The Ada specification
of the composite package gives the developer precise
control over which operations and data items are
visible or accessible. (See [Seidewitz 87] for a more
detailed discussion of Ada and the concept of
inheritance.)

4. Conclusion

The GRODY project has provided an extremely
valuable experience in the application of object-
oriented principles to a real system. This experience
guided the creation of the GOOD methodology which
is now being used on an increasing number of
projects inside and outside of the Goddard Space
Flight Center. As with any pilot project, some of the
major products of GRODY are the lessons learned
along the way.

As part of the GRODY project, a detailed assessment
has been made of the team's experiences during
design [Godfrey 871. At this time, however, most of
the observations mdst remain qualitative.
Nevertheless, it is clear that the GRODY design is
significantly different from previous FORTRAN
simulator designs [Agresti 86].
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It also became clear during the GRODY project that
the GOOD methodology does not fit comfortably into
the traditional life cycle management model. At the
very least, the design phase should be extended and
des!gn reviews should occur at different points in the
llfe cycle. The preliminary design review should
occur later in the design ph_e and should include
detailed object diagrams for the upper leveB of the
system, perhaps down to the level at which the design
becomes more procedural than object-oriented. The
critical design review would then inqlude the detailed
procedural designs, perhaps using an Ada-based
design language. This reyiew might actually take

place as a series of incremental reviews of different
portions of the design. This later approach is
supported by the well-defined modularity of an
object-oriented design.

The traditional functional viewpoint provides a
comprehensive framework for the entire software life
cycle. This viewpoint reflects the action-oriented
nature of the machines on which software is run.
The object-oriented approach discussed here can also
provide a comprehensive view of the fife cycle. The
object-oriented viewpoint, however, reflects the
natural structure of the problem domain rather than
the implicit structure of our hardware. Thus, it
provides a "higher-level" approach to software
development which decreases the distance between
problem domain andsoftware solution. By making
complex software easier to understand, this simplifies
both system development and maintenance.
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Abstract

We need to understand the effects that introducing

Ada has on the software development environment.

Thls paper is about the lemons learned from an ongoing
Ada project in the Flight Dynamics division of the

NASA Goddard Space Flight Center. It is part of a
series of lemons learned documents being written for

each development phase.

FORTRAN is the usual development language is
this environment. This project is one of the first to use
Ada in this environment. The experiment consists of

the development of two spacecrm't dynamics simulators.
One is done ]n FORTRAN with the usual development

techniques, end the other is done with Ada. The Ada

simulator is 135,000 lines of code (LOC), and the FOR-

TRAN simulator is 45,000 LOC.

We want to record the problems and successes

which occurred during implementation. Topics which
will be dealt with include (1) use of nesting vs. library

units, (2) code reading, (3) unit testing, and (4) lemons
learned using special Ada feature,.

It is important to remember that these resets are

derived from one specific environment; we must be very

careful when extrapolating to other environments.
However, we believet_ts is a goodbeg]naing to a better

understanding of Ada use in production environment*.

Ada im• trademark of the U.S.Department of Dtfev._¢ - Ada Joint
Program O_]cc.

C_ntaet: CJ.ro_y_ B_phy. Department. of Computer S¢i¢a¢¢.
Uaiverllty of Maryland. Co11¢$e Park. MD 20742. (301) 454-
81,54.

Support/'orthisrebcsa'¢hprovldedby NASA grantNSG-$123 tothe
University of Maryland.

Ada incorpocztes many software development con-

copes; it is much more than "just another language".
As such, we need to understand the effects of introduc-

ing Adat into the software development environment.
This paper coneentratcs on the lessons learned from an

ongoing Ada project in the Flight Dynamics Division of

the NASA Goddard Space Flight Center (GSFC). The
Ada project is sponsored by the GSFC Software
Engineering Laboratory (SEL). It is part of a series of

lessons learned documents being written for each
development phase.

Environment

FORTRAN is the usual development language in
this environment. The flight dynamics applieatlons

involve m'ssion analysis and spacecraftorbit and atti-
tude determination and control. Many of the software

development projects are slmilar from mission to mis-

sion providing,for example, an attitude ground support

system or an attitude dynamics simulator. This pattern
of developing similar applications is important for

domain expertLse and for the legacy developed in this
environment for code, designs, expectations and intui-

tions. The similarity between project, allows a high

level of rex.me of both design and code. Since the

pro[_le_ are baslc_ly famili_ones, the development

methodologies which involve much iterationdo not seem

to be necessary. The waterfall development model is

basicallyused here, and seems to work well in thiscase.

Lessons learned from the initialuses of Ada do not

include changing this basic methodology.

Project

The project was originally designed as a parallel
study with two teams. Each would develop a spacecrLft
dynamics simulator, one with FORTRAN a.s the imple-

mentation language, and one with Ada as the implemen-
tation language. The specifications for each simulator
were the same, supporting the upcoming Gamma Ray

Observatory (GRO) mission. However, there are many
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Other differences between the projec_ which keep the

study from being truly "parallel". The FOR_ ver-

sion was the production version,thus they had schedul-

ing pressures the Ada team did not have. Without

schedulingpre_sures,the Ada team made enhancements

in theirversionnot requiredby the specifications,which

increasedtime spent on the project. This was also the

firsttime any of these team members had done an Ado

project,while the FORTRAN team was quite experi-
enced with the use of FORTRAN. The Ada team

required training in the language and development

methodologies associated with Ada, while the FOR-

TRAN team did things in the usual way [McGarry,

Page et at.83]. The Ado team also experimented with

various design methodologies; this was necessary to find
which ones would work better for this development

environment. The FORTRAN team was working with

a mature and stable environment. In wa'itching to Ada,

the legacy of reuse for design, code, intuitions and
experience arc gone, and will be rebuilt slowly in the

new language.

The philo, ophies of development were quite
differentbetween the two projects.The Ada team con-

s_stent]yapplied the ideasof data abstractionand infor-

mation hiding to their design development. The FOR-
TRAN development used structural decomposition

methods.

Our goalswith thisprojectinclude:

(I) How is the use of Ado characterized in this
environment?

(2) How should the.existingdevelopment process be
modified to best changeover from FORTRAN to

Ada?

(3) What problems have been encountered in

development? What ways have we found to deal
with them?

Current Project Status

Both the FORTRAN and Ads teams started in

January, lg85. The Ads team began with training in

Ads, while the FORTRAN team immediately began

requirements analysis. The FORTRAN team delivered

its product (45K) after completing acceptance testing in
June, 1987. The Ads team is scheduled to finish system

tenting its 135K product in February, 1988. Discumions

of the product size differences and effort distributions

are presented in [McGarry, Agresti 88].

The lessons learned from major phases in the Ads

development are being recorded in a series of SEL

reports: Ads training [Murphy, Stark 851, design [God-

frey,Brophy 87], and implementation [in preparation[.

This paper presents some of the main resultsfrom the

implementation (code and unit test) lessons learned.

•Lessons Learned

1. Nesting vs. Library Units

1.1 The flat structure produced by u.sin# library un,ts has

advantages over a heavlllt nested 6tructure

Nc_ting has many effects on the resulting product.

The primary advantage of nesting is that it enforces the

principle of information hiding structurally, because of

the Ads visibility rules. Whereas with library units, the

only way to avoid violations of information hiding is

through self-disclpline. In addition, the dot notation

tells the package where a module i.s located.

There are quite a few disadvantages to nesting,
however. Nesting makes reuse more difficult. A second •

dynamics simulator in Ads is now being-developed

which can reuse up to ¢0% of the Ads project's code.
But in order to reuse it, the nested code has to be

unnested, sincethe new appllcatlononly needs some of

the nested units.This is often a labor intensiveopera-

tion. Nesting also increasesthe amount of recompiia-

tion required when changes are made, since Ada

assumes dependencies between even sibling nested

objects/procedures,even when the dependency is not

reallythere. This requires more parts of the system to

be recompiled than is necessary when more libraryunits

are used. It is also harder to trace problems back

through nested levels than it is through levels of library

units.There isno easy.way to tellwhere s unit of code

was called from, when it is nested. But library,units

have the "with" clauses to identifythe source of a piece

of code. For thisreason itisnow believed that over use

of nesting at the expense of using thore library units

makes maintenance harder. This is contrary to the

team's earlierexpectations. The team had used nesting

successfullybefore on a 5000 linesof code trainingpro-

ject. However, this kind of approach does not scale-up

well when developing large projects.

Library units seem to have a lot of advantages.

Besides fewer recompilations when changes are made,

and easier unit testing, every library unit can e_ily be
made visible-to an)' other library unit merely by use of

the "with" clause. In nested units this visibility does not

exist, and a debugger becomes essential to see what is

happening at the deeper levels that are not within the

scope of the test driver. Library units allow smaller

components, smaller files, smaller Compilation units, and
le_ duplication of code. The system is more maintain-

able, since it is easier to find the unit desired. Reuse

with librat3' units is also easier, since the parts of the

system are Smaller. Configuration control is also easier

with library uniLs since more pieces are separate (i.e.,
the ratio of changes to code segments modified is closer

to I). The major disadvantage seems to be that a com-

plicated library structure develops, which can lead to

errors by the developers. However, if the Ads project

were to be done over now, the team would use more

librar'y units, and nest less.
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Advantages and Disadvantages of
Nesting vs. Library Units

i

I

Adv.ntage/

NESTING

Disadvantages

• information hiding
• visibility control

• type declarations in

one plw:e

* enlarged code

• more rteompilations
• harder to trace problems

through nested
levels

* clm't easily tell when a
unit of code called

from .....................................

* type d ecJar$tlo_ in one
place mean_ problems
for rexme

* harder maintenance

* debugger required
• larger u_alt sizes

inhibit code reading

* harder to re_e part of

the system

LIBRARY UNITS

Advan*.ages

• fewer recompilations

• easier unit testing

• smaller _mp6nents
• smaller 61es

• smaller compilation units
• less code duplication
• eas|er mgintenance

* "with* clauses show source
of other code units used

* easier reuse

• easier configuration control

Di_sdvan_ges

• no information hiding

• complex ]ibrary-struCture

1.2 The balance between nesting and library units is an

important implementation issue, not a desien isaac.

The issue of whether to use library units or nested

units first arises in the design phase. At least this is the

case if it is assumed that the design documents r_flcct

this _pect of implementation (i.e., the design docu-
ments indicate in some way when nesting is intended vs.

when library units should be used). %Vhile it is
appropriate for the design to show dependencies, these

should not dictate implementation, as far as the library

unit/nesting question js _conc_rn_d: The team con-

sideied the decisi6_s c0ncerniag nestlngllibrary units to

be an implementation issue.

5207

The library ufiitsin the Ada project went dow_

about 3 to 4 levels,while nesting went down many lev-

els below that. Another view of the system shows the

Ada project had 124 packages and 55 iibr_,'y units.

During implementation most team members felt an

appropriate balance had been reached between nesting

levels and number of library units. However, in retros-
pect, several felt the nesting had been overdone.
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1.3 11appearl best to use Library_niLJ at l_o_tdolcm to

the sabsvstem level, and nesting at lo_r levels tohcre

Lhcrc /s minimal interaction among a small number o/

modules

Experiences with unit testing seem to indicate that

library, units should at least go down 1,o the subsystem
level. This makes testing easier. Below this level the

benefits of nesting sometimes become too important to

ignore. This is one heuristic which could be used to

help determine when the transition from library units to
nested units should occur.

Aa additional way to determine when the transi-

tion should occur is to examine the degree of interaction

between pieces. For modules which interact heavily,

library units are preferred. At the point where the

interaction drops off, using nested units is preferable.

Sections with nested code are easier to deal with when

they are small.

1._; In mapping design to code, caution should be _cd in

applying too rigorous a set of rules for visibil,'ty control.

In an attempt to control visibility, two features

appear to have been too rigorously applied. The first

feature is nesting. The design of the Ado project

seemed to suggest a particular nesting implementation.

But this created many objects within objects yielding a

high degree of nesting. The second way to control visi-
bility is through the use of -,any "¢all-through"s (a pro-

reduce whose only function is to call another routine).
"Cail-through's were used to group appropriate pieces

together exactly as represented in the design. They can

be implemented via nesting or library units. Faithful-

nero to the design structure was maintained this way.

The design had no--primitive objects with specific

operations. These objects were implemented as pack-

ages. To put the specific operations (subprograms) into

the objects (packages) the team used "call-through"s.

Thus a physical piece of code was created for every

object in the design. "Call-through"s are one of the

reasons for the expanded code in the Ado project when

compared to the FORTRAN version. It is estimated

that out of the 13SK LOC making up the Ado system,

22K LOC (specifications and bodies) are because of

"call-through"s. While "call-through"s provide a good

way to collect things into subsystems, these should be

limited to only two or three levels in the future.

If the implementation were to be done over now,

many of the existing "call-through"s would be elim-

inated. Instead of creating actual code to correspond

with every object in the design, some objects in the

design would remain "logical objects". No actual pack-

ages would exist: instead, a logical object would be
made up of a collection of lower level objects.

2. Code Reading

Code reading is generally done with unit testi,g.

The developer doing the code reading is not the orle
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who developed the code. Comments are returned to the

original developer. After code reading and unit testing,
the unit is put under configuration control.

£.1 Code readin O helps in lralnin¢ people to use Ado

Besides helping to find errors, rode reading has.the

5car fit of increasing the proficiency of team members in

Ado. Individuals can see new ways to handle the algo-

rlthms being encoded. Code reading also allows another

person besides the original developer to understand a

given part of the. project. This insight should help

understanding and lead to better so[utlons of problems
in the future.

E.2 Code reading helps isolate style and lol6c errors.

The m_st common errors found in code reading

with Ado were style errors. The style errors involved

adding or deleting comments, format changes, and

changes to debug code {not left in the final product).

Other types of errors found are initialization errors, and

problems with incompatibilities between design and

code. This can be due to either a design error or a end-

ing error.

Because the Ado compiler exposes many errors not

exposable by a FORTRAN compiler, code reading Ado

has a different flavor than code reading FORTRAN.

For example, the Ado compiler exlx_ses such errors as

(1) wrong data types, {2) call sequencing errors, (3) vari-
able errors-- either the variable is declared and never

used, or it is'used without being declared. So, one

seasoned FORTRAN developer working on the Ado pro-

ject noted that code reading is more interesting in FOR-
TRA2q, since there were more interesting errors found in

code reading FORTRAN, not found in reading Ado

code. In general, logic errors are bard to find in this

application domain, but enough logic errors are found to

make code reading worthwhile.

Some of the difficulty of code reading with Ado on
this project was due to the heavy nesting and the

number of "call-through" units. Code reading would

have been helped by a flatter implementation. The
SEPARATE facility makes it necessary to look in many

places at once to follow the code. However, code read-

ing in Ado was easier than in FORTRAN because the

code wa_ more English-like, and hence, more readable.

Often the reused FORTRAN code is an older variety

without the structured constructs available in later ver-
sions.

Code reading tended to miss errors that spanned

multiple units. This would be expected with any imple-

mentation language as well. One example was a prob-
lem where records were skipped when they were being
output. The debugger actually found the problem.

Despite the implementation language, code reading

appears to be important for highly algorithmic routines.
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Croups of routinesthat are usedonly to callothers may

be checked to make sure the design'spurity is main-

tained.

3. Unit Testing

5'I Unit testingtunsfaund to be harder uKth _4da then

unth FORTRAN.

The FORTRAN units arc already relatively iso-

lated; this makes unit t_stlng easy. Only the global

COMMONs need to be added to do the unit tests. On

the other hand, the Ada units require a lot of "with'd

in" code, and are much more interdependent. Another

very differentAda projecthad perhaps even more inter-

dependence between its modules than the Ada project
did. That team aLso found the interdependence made

unit testingvery di_cult. More interdependence exists
between Ada units because thereare more relationsto

express in Ads- There are textualinclusion(nesting),

wlth-ing in (libraryunits),and invocation. FORTRAN

only has invocation.

8._ The introduction of Ada as the implementation

language changed the unit testing methods dramatically.

Unit testing with Ada was done very differently.

Since one unitdepends on many others, it is usually

hard to testa unitin isolation,so thiswas generallynot

done. The Ada pieces were integratedup to the pack-

age level,and then unit testingwas done. Then testing

was done with groups of unitsthatlogicallyfittogether,

rather than actual unit testing. The integrated units

are t_ted, choosing only a subset of possible patl:m at a

time. The debugger is used to look at a specific unit,
since the test drivers cannot "see" the nosed ones.

With Ada projectsa debugger becomes essential.This
is in contrast to the usual development in FORTRAN

where no integrationoccurs at alluntilafterunit test-

ing.

This shows that the biggest difference between the

way FORTRAN and Ada projects are done at this point

in development is incremental integration. This actu-

ally represents a change in the development lifecyele of
an Ada product; integration and unit testing axe alter-

nately done rather than finishing unit testing before

integration.

8.8 The library unit�nesting level issue directly affects

the difficulty o/unit testing.

The greater the nesting level, the more di_cult

unit testing ks, since the lower level units in the subsy, s-

tem are not in the scope of the test driver. This is the

primary reason a debugger becomes a required testing

aid with Ada projects. For this reason, more library

units and less nesting would have made testing easier.

Library units have to go down to a level in the design
that makes testing more feasible. With the Ada project

that would have meant taking librar3: units down to a

lower level in tile design, if the project were to be done

over.
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Two other ways to deal with the nesting during
unit test were tried and were not very succmmful. One

solution pulls an inner package out, and includes the

types and "wlth'd in" modules the outer package used
in order to execute the inner one. This is ditlqcult to do

for each unit. The Other solution is to modify the

specifications of the outer package so that nested pack-

ages can be "seen" by the test driver. This solution

requires lots of recompilation. With more library units,

there would be less recompilation, because there would

be fewer changes of specifications. Again however, the

best way to test was to use the debugger on unaltered

code.

8.2 The importance o/ unit testing seems to be more

related to appllcatian area than to implementation

tongue, e: 7=i ? ?

Whether the implementation is in FORTRAN or

Ada, does not seem as important as whether the appli-

cation has lots of c_alcul_atlons or has lots of data mani-

pulations. Unit testing seemed more valuable with

scientific applications; perhaps because calculation errors

show up when only a small amount of Iocalized code is

executed. But data manipulation errors require more of

the system ___b__e operating before it is known if errors
are present.

4. Use of Ada'a $_i_|Feature-s

4.1 Separation of specifications and bodies is quite

beneficial and easy to implement.

The team entered the specifications first, whenever

possible, before the rest of the code. This gave a high

level view of the system early in the development.

Another benefit is that thishelped clarifythe interfaces

earl>'. Separating the specificationsand bodies also
reduces the amount of recompilation required when

changes are made.

___ Generics we refalrly easy to implement and they
reduce the amount of code requ;rid.

The only problems encountered were with correct

compilation of the generics in some cases,due to com-

piler bugs in an early version of the compiler, rather
than incorrect code. As Ada matures, this will not be a

problem at all.

,(8 Using to0 many tYPes increases coding d,ff, eulty

The strong typing was very difficult to get used to,

when one is accustomed to weakly typed languages such

FORTRAN. It was easy to create too many new

types as well.

Often a brand new type was created with a strict

range appropriate for one portion of the application.

Then in other areas where subtypes could have been

used, the range on the original type was found to bc too

restrictive, so another brand ne_ type was created

instead to handle the new situatiot_. Then a whole new
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set of operations had to be created as well for the addi-

tional new type. Next time the team would recommend

creating a more general new type, and using many

differentsubtypes of the original type, rather than

creatingmore new types. In thisway operationscan be
reused and there are far fewer main types to keep track

of. Designers need to spend time developing familiesof

typesthat inheritpropertiesfrom one another.

The strong typing presented some problems when

testing-units, though it prevents some kinds of errors,
also. Itwas harder to write testdriversthat could deal

with all the types in the units being tested. It was also

harder to do the I/O, since so many types had to be

dealt with.

_._ Ta_kif_ tma diffic_ 0 to code and test, holocoer, this
meemm due to concurrency m genera/ and not Ada

.,¢c,f_.uy.
Tasks were used in the user interface part of the

project. The user was given many options which made
the interactions between the tasks of the sul_tem

very difficultto plan and execute correctly.

It was harder to code tasks from the design than it

was to code other types of units. However, thisis not

reallydue to Ads, but rather itis the nature of con-

currency problems. The language made the use of task-

iug easier,and encouraged the developers to use tasking

more than they would have otherwise. The dynamic

relationships of concurrency cannot be represented in

the design (termination, rendezvous, multiple threads of
control). Correctness was very difficult to assure, as is

usual with these kinds of problems, and deadlock was

hard to avoid. Functional testing was done, which is

the usual type in this environment.

The major problem the developers had was with
exceptions. These are no worse with tasking than they

are with any other progrmm unit, however.

J.5 Ezccption hand/or8 Aa_c to be coded care/all F.

The key problem with exceptions is deciding the

best way to handle them. Errors and the sources of
errors can be hard to find if the exception handlers are

not coded carefully. Suppose a particular procedure will

call another unit, expecting some function to be per-

formed, and certain kinds of data to be returned. If an

exception is raised and handled in the called unit, and it

is non-specific for the problem raising the exception

(e.g., "when others") , the caller gets control back
without the required function being performed. But the

exception was handled and data was returned, so the
call looks successful. Yet as soon as the caller tried to

use the data from the routine where the exception was

raised and handled, it fails. Because of propagation, it

can be very di_cult to trace back the error to the origi-
nal source of the problem.

S_veral members of the team would recommend

incorporating the way exceptions are to be handled into

the design, rather than leaving this until implementa-

tion. Put into the design (I) what exception would be

raised, (2) where it will be handled, and (3) what should
happen.

Ada Features'

implementation
ease benefit

tasking
generics +
strong typing 0

exception
handling 0

nesting +
separate

spees/bodies ++

+

++
0

+

++

* This figure represents a subjective assessment
based on team member interviews

Summary

We have learned several important things about
four major areas in implementation. There are many

advantages to using library units, though nesting can

have its usefulness at some point below the subsystem

level. Code reading helps train people in Ads, and helps

to isolate style and logic errors. Unit testing was sub-

stantially changed by using Ads: the first stages of
integration often began before unit testing proceeded.

Some Ads features are quite powerful and should be

• carefully used.

It is important to remember that these results are

derived from one specific environment. We must be
very careful when extrapolating to other environments.

There are also many questions still left to be answered.

Studies of this project will continue, and other Ads pro-

jects are being started. These will help us evaluate the

effects on longer term issues such as reuse and maintai-

nability of the Ads projects. We believe this project is

a good beginning to a better understanding of Ada use

in production environments.

Acknowledgements

The Ads experiment is managed by Frank

McGaxry of NASA/GSFC. The authors would like to
thank him and the Ada team for their cooperation and

assistance.

5207

4-29



ORIGINAL PAGE IS

OF POOR QUALITY

Referenc_

[Agresti 85]
Agr_ti W., "Ada Experiment: Lessons Learned

(Training/Requirements Analysis Phase)", Goddard

Space Flight Center, Greenbelt, g_ 20771, August

I085.

IGodfrey, Brophy 87J

SEL-87-004, "Assessing the Ada Design Process and

Its [mplicatiom: A Case Study", Godfrey S., and
Brophy C., Goddard Space Flight Center, Green-

belt, MD 20771, July 1987.

[McGtrry, Agresti 88] .

"Me_uring Ada for Software Development in the

Software Engineering Laboratory", Hawaii Interna-

tional Conference on Systems Science, January,
1088.

[McGarry, Nelson 85]

McGarry F., and Nelson R., "An Experiment with

Ada - The GRO Dynamics Simulator Project

Plan," Goddard Space Flight Center, Greenbelt,

MID 20771, April 1985.

[McGarry, Page et al. 83J
SEL-81-205, "Recommended Approach to Software

Development", McGarry F., Page J., Esllnger S.,

Church V., and Merwarth P., Goddard Space

Flight Center, Greenbelt, NqD 20771, April 1983.

[Murphy, Stark 85]

SEL-85-002, "Ada Training Evaluation and Reeom-

mendatlon_ from the Gamma Ray Observatory Ada
Development Team", Murphy R., and Stark M.,

Goddard Space Flight Center, Greenbelt, _,_D
20771, October 198.5.

Biographies

Carolyn E. Brophy is a graduate research assis-

tant at the University of Maryland, CollegePark. Her

research interests=are _fi _ftware engineering, and sl]e is

workiag with the NASA Goddawd SoRware Engineering
Laboratory. Ms. Brophy received a B.S. degree from
the University of Pittsburgh in biology and pharmacy.
She is a member of ACM. ..........

Sara H. Godfrey is with Goddard Space Flight
Center in Greenbelt, Maryland, where she has been

working with the NASA Goddard Software Engineering

Laboratory. She received a B.S. degree from the

University of Maryland in mathematics. (picture miss-

ing) ....

WiJllam W. Agresti is with Computer Science5

Corporation in Silver Spring, Maryland. His applied
research and development projects support the Software

Engineering Laboratory at NASA's Goddard Space

Flight Center. His research interests are in software
process engineering, and he recently completed the

tutorial text, New Paradiqms for Software Development,
for the W-EE Computer Society, From 1973-83 he held

various faculty and administrative positions at the

University of Michigan-Dearborn. He received the B.S.

degree from Case \Vestern Reserve University, the M.S.
and Ph.D. from New York University.

Victor R. Basill is Professor and Chalrma_fi

of the Computer Science Department at the Univer-

sity of Maryland, College Park, Maryland. He wa.s
involved in the design and development of several

software projects, including the SIMPL family of
programming languages. He is currently measuring

and evaluating software development in industrial

and government settings and has consulted with many

agencies and organizations, including IBM, GE,

CSC, GTE, MCC, AT&T, Motorola, liP, NTIL,

NSWC, and NASA

W

W

ml

m
I

ml

tll

I

q

I

a
NB
m

II

J

I

5207

4-30

m

I

i



He is one of the founders and principals]n the Software Engineering Labora-

tory,a jointventure between NASA Goddard Space Flight Center, the Universityof

Maryland and Computer Sciences Corporation,established in IQ76. He has been

working on the development of quantltat;ve approaches for software management,

engineering and quality assurance by dove.toping models and metrics for the
software development process and product.

Dr. Basili has authored over 00 papers. In 1_82, he received the Out-

standing Paper Award from the IEEE Transactions on Software Engineer-

ing for hispaper on the evaluationof methodologies.

He was Program Chairman for several conferences including the 6th Interna-

tional Conference on Software Engineering. He serveson the editorialboards of

the Journal o.t' Systems and Software and the IEEE Transactions on Software

Engineering and is currently Editor-in-Chlef of TSE. He is a member of the Board

of Governors of the IEEE Computer Society.

5207

4-31



OBJECT-ORIENTED PROGRAMMING IN SMALLTALK AND ADA

Ed Seidewitz

Code 554 / Flight Dynamics Analysis Branch

Goddard Space Flight Center
Greenbelt MD 20771

(301) 286-7631

Presented at the

1987 Conference on Object-Oriented Programming Systems, Languages and Applications
October 1987

Abstract 1. Introduction

Though Ada and Modula-2 are not object-
oriented languages, an object-oriented
viewpoint is crucial for effective use of their
module facilities. It is therefore instructive to

compare the capabilities of a modular language
such as Ada with an archetypal object-oriented

language such as Smalltalk. The comparison in
this paper is in terms of the basic properties of

encapsulation, inheritance and binding, with
examples given in both languages. This
comparison highlights the strengths and

weaknesses of both types of languages from an
object-oriented perspective. It also provides a
basis for the application of experience from

Smalltalk and other object-oriented languages
to increasingly widely used modular languages
such as Ada and Modula-2.

Procedural programming techniques concentrate

on functions and actions. Object-oriented
techniques, by contrast, attempt to clearly
model the problem domain. The designers of
Simula recognized the attractiveness of this
concept for simulation and included specific

constructs for object-oriented programming

[Dahl 68]. Since then, several programming
languages have been designed specifically for

-general-purpose object-oriented programming.
The archetypal example is, perhaps, Smalltalk

because the language is structured so completely
around the object concept [Goldberg 83].

Ada* [DOD 83] and Modula-2 [Wirth 83] are
not designed to be object-oriented

programming languages. However, they do

have certain object-oriented features which are
descendants of Simula donstructs. Further,
object-oriented concepts have become
extremely popular for design of Ada programs

(e.g., see [Booch 83]). This paper compares and
contrasts the strict object-oriented capabilities
of Smalltalk with the object-oriented features
of Ada. The comparison is in terms of the

basic object-oriented properties of
encapsulation, inheritance anti binding. I have

attempted to keep the main body of the paper
fairly objective, reserving my more

judgemental comments for the conclusion.

*Ada is a registered trademark of the US
Government (Ada Joint Program Office)
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2. Encapsulation

An object consists of some private data and a
set of operations on that data. The intent of an

object is to encapsulate the representation of a
problem domain entity which changes state over
time. Abstraction deals with how an object
presents this representation to other objects,

suppressing nonessential details. The stronger
the abstraction of an object, the more details
are suppressed by the abstract concept. The
principle of information hiding states that such

details should be kept secret from other objects,
so as to better preserve the abstraction modeled

by the object. Both Smalltalk and Ada directly
support these basic encapsulation concepts for
objects. In Smalltalk these features are the
central structure of the language while in Ada

they are added to a core language of
ALGOL/Pascal heritage.

In Smalltalk, objects are always instances of a
class which represents a set of problem domain
entities of the same kind. All instances of a

class provide the same interface (set of
operations) to other objects. A class thus
represents a single abstraction. The class
definition provides implementations for each of

the instance operations (methods in Smalltalk)
and also defines the form of the internal

memory of all instances.

A Smalltalk method is called by sending a
message to the object, such as:

MyFinances receive: 25.50

The protocol of an object is the set of all
messages that may be received by the object. A

class itself has a protocol which usually includes
a few messages to request creation of instances,
e.g. "Finances new". Note that protocols are

not really a part of the Smalltalk language
proper, but are documentation of the
abstraction represented by a Smalltalk class.

The basic object=oriented construct in Ada is
the package. Unlike Smalltalk, objects can be

defined directly in Ada without having any
class. Further, Ada requires the definition of
the interface of an object separately from the
implementation of the object. This is done in a

package specification. Ada uses a more
traditional procedure call syntax for object
operations.

Ada is a strongly typed language, so the type of
every operation argument and return value must
be declared. A package specification provides

enough declarative information for compile-
time syntax and type checking. Additional
operation descriptions, such as in the Smalltaik

protocol, can be provided by comments. Other
code refers to package operations using a
qualified name, e.g., "Finances.Receive". The
package body gives the implementation of the

package.

Example 1 -- Finances

Class Finances is a simple class of objects which
represent financial accounts of income and debt

(all examples are simplified and adapted from
[Goldberg 83]). The protocol for this class is:

Finances class protocol

instance creation

initialBalance: amount

Begin a financial account
with "amount" as the

amount of money on
hand.

new Begin a financial account
with 0 as the amount of

money on hand.

transactions

receive: amount

Finances instance ISrotocol

Receive an amount of

money.

spend:amount Spend an amount of

money.

inquiries

cashOnHand

totaiReceived

Answer the total amount

of money currently on
hand.

Answer the total amount

of money received so far.
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totalSpent Answerthe totalamount
of money spent so far.

The implementation of the Finances class must
include a method for each of the messages in

the protocol. It also defines the flames of a Set
of instance variables which represent the

internal data of each _class instance. The
instance variables and the implementations of
the methods are hidden from users of instances
of the class. In the Smalitalk-80 system, the

various parts of a class definition are accessed

through an "interactive system br0wsei_" The
textual descripti6n used here is based on the
one used in [Goldberg 83]. The definition of
class Finances is:

class name Finances

superclass Object
instance variable names income

debt

class methods

instance creation

tnitlalBalance: amount

"super new setlnitialBalance: amount

new

"suPer new setlnitialBalance: 0

instance methods

transactions

receive: amount
income <- income + amount

spend: amount
debt <- debt + amount

inquiries

cashOnHand
^income - debt

totalRecelved
^ income

totalSpent
"debt

private

setlnltiaiBaiance: amount
income <- amount.
debt <- 0

Note that "super new" refers to the system
method to create a new instance, """ indicates
returning a value and "<-" indicates assignment.

Some examples of use of this class are:

MyFinances <- Finances initialBalance: 500.00.
MyFinances sp_302.50. = ....
MyFinances spend: foodCost + salesTax.

MyFinances receive: payr
tax <- taxRate * (MyFinances totalReceived),

The specification for an Ada package Finances

corresponding to the above SmalItalk protocol
is: "

package Finances is

type MONEY is FLOAT;

== Initialization

procedure Set (Balance : in MONEY);

-= Transactions

procedure Receive (Amount : in MONEY);
procedure Spend (Amount : in MONEY);

-= Inquiries
function Cash On Hand return MONEY;

function Total Received return MONEY;

function Total Spent return MONEY;
1

end Finances;

The above specification for Finances really does
not define a complete object in the Smalltalk
sense. This is because a package is a static

program module, and cannot be passed around
as data. For an object to be passed as data in
Aria it must have a type. A type is analogous to
a Smalltalk class in that it represents a set of

objects with the same set of operations and
internal data. An object type is called a private

type in Ada because the representation of the
internal data is hidden. The specification for a

private type FINANCES is:

m
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package FinanceHandler is

type FINANCES is private;

type MONEY is FLOAT;

-- Instance creation
function Initial (Balance : MONEY)

return FINANCES;

-- Transactions

.procedure Receive
( Account : in out FINANCES;

Amount : In MONEY );

procedure Spend
( Account : In out FINANCES;

Amount : In MONEY);

-- Inquiries
function Cash On Hand

( Account" FINANCES )
return MONEY;

function Total Received

( Account : FINANCES )
return MONEY;

function Total_Spent
( Account : FINANCES )
return MONEY;

private

type FINANCES is
record

Income : MONEY := 0.00;

Debt : MONEY := 0.00;

end record;

end Finance_Handler;

Private types must be defined within packages.
Package FinanceHandler specifies each of the
operations on objects of type FINANCES, while

the type itself defines the internal data for each
object. The private part of the package
contains the definition of type FINANCES in

terms of other Ada type constructs. In this

case, objects of type FINANCES are effectively
declared to have two instance variables, as in

the Smalltalk example. (The private part of a

package is logically part of the package
implementation, not the specification. It is
included in the specification only so that the

compiler can tell from the specification alone
how much space to allocate for objects of
private types.) The package FinanceHandler is

in some ways similar to the metaclass of the
Smalltalk class Finances. In Smalltalk, a
metaclass is the class of a class. Both the

metaclass and the handler package provide a
framework for the definition of a class, and

they also allow for the definition of class
variables and class operations.

Since the declaration of instance variables is in

the private part of the specification of

Finance_Handler, the package body only needs
to define implementations for each of the

specified operations:

package body FinanceHandler is

-- Instance creation

function Initial (Balance : MONEY)
return FINANCES is

begin
return

( Income ffi> Balance,
Debt => 0.00 );

end FinanceHandier;

-- Transactions

procedure Receive
( Account : in out FINANCES;

Amount : in MONEY) is

begin
Account.Income := Account.Income

+ Amount;

end Receive;

procedure Spend
( Account : in out FINANCES;

Amount : in MONt_Y ) is

begin
Account.Debt := Account.Debt

+ Amount;

end Spend;

-- Inquiries
function Cash On Hand

( Account" FINANCES )
return MONEY is

begtn
return

Account.Income - Account.Debt;

end Cash On Hand;
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function Total Received

( Account : FINANCES )
return MONEY is

begin
return Account.Income;

end TotalReceived;

function Total_Spent
( Account : FINANCES )
return MONEY is

begin
return Account.Debt;

end Total_..Spent;

end Finance_Handler;

Each FINANCES operation explicitly includes

an Account of type FINANCES as one of its
parameters. The instance variables of an

Account are then accessed using a qualified
notation such as "Account.Income". This access

to instance variables is only allowed within the
body of package Finance Handler. Some
examples of the use of type FINANCES are:

declare

My_Finances
: Finance Handler.FINANCES

:= Finance Handler.Initial

(Balance => 500.00);

begin

Finance_Handler.Spend
( Account => My_Finances,

Amount => 32.50 );

Finance_Handier_pend
( Account => My_Finances,

Amount => Food Cost + Sales Tax );
Finance Handler.Receive

( Account => My Finances,
Amount => Pay );

Tax := Tax Rate
* Finance Handler.Total Received

(My_Finances);

end;

Packages in Ada allow the definition of objects
as program modules or the definition of classes

as private types. Packages cannot themselves be
passed as data, but the instances of private
types can. It is also possible in Ada to define
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classes of objects which cannot be passed as
data. This is done using a generic package

which serves as a template for instances of the
class. For example, the earlier specification for

package Finances can be made generic by
simply adding the keyword generic at the
beginning:

generic

package Finances is

end Finances;

Other packages can then be declared as
instantiations of the generic package. For

example:

declare

package M_,_Finances is
new Finances;

begin

My_Finances.Receive (Amount => Pay);
Cash := My_Finances.Cash On Hand;

end;

I will have more to say later on other important
roles of generics in Ada.

3. Inheritance

A class represents a common abstraction of a set
of entities, suppressing their differences. At a
lower level of abstraction, some entities may
differ from others. A subclass represents a
subset of the entities of a class. A subclass

inherits general abstract properties from its
superclass, defining only the specific

differences which appear at its lower level of
abstraction. This technique of subclass
inheritance allows the incremental building of

application=specific abstractions from general
abstractions.

Smalltalk directly supports the concept of
subclassing and inheritance. In Smalltalk every
class has a superciass, except for the system

class Object which describes the similarities of

atl objects. Instances of a subclass are the same
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as instances of the superclass except for
differences explicitly stated in the subclass
definition. The allowed differences are the

addition of instance variables, the addition of
new methods and the overriding of superclass
methods. An instance of a subclass will

respond to at least all of the same messages as
instances of its superclass, though not

necessarily in exactly the same way.

Ada does not provide direct support for

subclassing or inheritance. However, the

concept of inheritance can be used profitably
within Ada, in some ways more generally than
in Smalltalk. When defining a subclass in Ada,

it is still necessary to declare all operations of
that subclass, even those inherited from a

superclass. Thus the specification of a subclass
package will include all the operations of the

superclass and possibly some additional ones.
(This also results in a hiding of the use of
inheritance reminiscent of the discussion in

[Snyder 86].) In the body of the subclass
package, inherited operations must be
implemented as call-throughs to the operations
of the superclass.

Example 2 -- Deductible Finances

The class DeductibleFinances is a subc}ass of
the Finances class of Section 2. Instances of
DeductibleFinances have the same functions as

instances of Finances for receiving and

spending money. However, they also keep
track of tax deductible expenditures. The
definition of DeductibleFinances specifies one

new instance variable, four new instance
methods and overrides two class methods:

class name

superclass
instance variable names

DeductibleFinances
Finances

deduc.tibleDebt

class methods

instance creation

initialBalance: amount

"(super initialBalance: amount) zeroDeduction

new
"super new zeroDeduction

instance methods

transactions

spendDeductible: amount
self spend: amount deducting: amount.

spend: amount deducting: deductibleAmount

super spend: amount.
deductibleDebt <- deductibleDebt

+ deductibleAmount

inquiries

totaiDeduction
"deducfibleDebt

private

zeroDeduction
deductibleDebt <- 0

Note that sending a message to "self" results in a
call on one of an object's own methods, while

sending a message to "super" results in a call on
one of the methods of the superclass Finances.

Now consider an Ada type which defines a

subclass of the FINANCES type of Section 2:

with FinanceHandler;
package Deductible_FinanceHandler is

type DEDUCTIBLEFINANCES is private;
subtype MONEY is

FinanceHandler.MONEY;
t

-- Instance creation
function Initial ( Balance • MONEY )

return DEDUCTIBLEFINANCES;

-- Transactions

procedure Receive
(Account:in out DEDUCTIBLE FINANCES;

Amount" in MONEY );

procedure Spend
( Account" in out DEDUCTIBLE FINANCES;

Amount' in MONEY;

Deductible Amount " in MONEY := 0.00 );
procedure Spend Deductible

( Account" in out DEDUCTIBLEFINANCES;
Amount" in MONEY );

5207
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-- Inquiries
function Cash On Hand

( Account : DEDUCTIBLEFINANCES )
return MONEY;

function Total Received

( Account : DEDUCTIBLEFINANCES )
return MONEY;

function Total_Spent

( Account : DEDUCTIBLEFINANCES )
return MONEY;

function Total Deduction

( Account : DEDUCTIBLEFINANCES )

return MONEY;

private

type DEDUCTIBLE_FINANCES is
record

Finances : FinanceHandler.FINANCES;
Deductible Debt : MONEY := 0.00;

end record;

end Finance_Handler;

Package Deductible_Finance_Handler has the
new operations SpendDeductible and
TotalDeductions, and it has a modified Spend
operation. The Spend procedure has a
Deductible Amount parameter with a default
value of 0.00.

DEDUCTIBLEFINANCES implements
inheritance from FINANCES by using the
instance variable Finances of type FINANCES.
Inherited operations are then implemented as

call-throughs to operations on Finances:

package body DeductibleFinanceHandler is

-- Instance creation

function Initial ( Balance • MONEY )

return DEDUCTIBLEFINANCES is
begin

return

( Finances => FinanceHandier.Initial(Balance),
DeductibleDebt => 0.00 );
end Initial;
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-- Transactions

procedure Receive ......

( Account" In out DEDUCTIBLEFINANCES;

Amount" in MONEY ) is

begin
-- INHERITED --

Finance Handler.Receive -

( Account => Account.Finances,
Amount => Amount );

end Receive;

procedure Spend

( Account • In out DEDUCTIBLEFINANCES;
Amount" in MONEY;

DeductibleAmount • in MONEY := 0.00 ) is
begin ................

FinanceHandler .Spend
( Account => Account.Finances,

Amount => Amount );

Account.Deductible Debt
:,i Account.Deductible Debt

+ DeductibleAmount;

end Spend;

procedure SpendDeductible
( Account : tn out DEDUCTIBLE_FINANCES;

Amount : In MONEY ) is

begin
Spend

( Account : => Account,
Amount => Aa3ou_;
Deductible Amount => Amount );

end Spend Deductible;

-- Inquiries
function Cash On Hand

( Account : DEDUCTIBILE FINANCES )
return MONEY is

begin
-- INHERITED --

return FinanceHandler.Cash On Hand
(Account.Finances);

end Cash On Hand;

function Total Deductions

(Account: DEDUCTIBLE FINANCES)
return MONEY is

begin
return Account.Deductible Debt;

end TotalDeductions;

end DeductibleFinanceHandler;
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Unlike Smalltalk, implementing inheritance in

Ada requires an extra level of operation call.
Also, in Ada the subclass does not have direct
access to the instance variables of the

superclass. The superclass package presents the
same abstract interface to subclass packages as
to any other code. This tightens the

encapsulation of the superclass abstraction. It
also allows easy extension to multiple
inheritance where a subclass may inherit

operations from more than one superclass.
Multiple inheritance simply requires multiple
superclass instance variables with inherited

operations calling-through to the appropriate
superclass operations. In this case the new class
is really a composite abstraction formed from

more general component classes.

The main drawback of this approach is that the

Ada typing system does not recognize
subclassing. In Ada all private types are

distinct. Even though the type
DEDUCTIBLE FINANCES is logically a
subclass of type FINANCES, the type

DEDUCTIBLE FINANCES is not a subtype of
type FINANCES. It is not possible, for
instance, to pass an instance of type

DEDUCTIBLE FINANCES to a procedure
expecting an argument of type FINANCES.

The Ada compiler would see this as a type
inconsistency. A partial solution to this
involves the use of the Ada generic facility, and
will be discussed later in Section 4. However,

the problem cannot be fully overcome in Ada,
and [Meyer 86] clearly shows that true
inheritance is more powrful than genericity.

4. Binding

The Smalltalk message passing mechanism

operates dynamically. When a message is sent
to a Smalltalk object, the method to respond to
that message is looked-up at run-time in the

object's class (and possibly superclasses).
Further, Smalltalk variables are not typed, so
they may contain objects of any class. Thus it

is generally not possible to determine statically
exactly what method in what class will respond
to a message. Messages are dynamically bound
to methods at run-time. If an object cannot

respond to a message, there is a run-time error.

The use of dynamic binding gives the
programmer great freedom to create general
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4-39

code. Any object can be used in an instance

variable or as an argument in a message as long
as it can respond to the messages sent to it.
Another use of dynamic binding in Smalltalk is

with the "pseudo-variable .... self" which is used
by an object to send messages to itself. When a
message is sent to an object, "self" is set to the

object to which the message is sent. The
dynamic binding of messages sent to "self"

allows a class to call on methods that are really
defined in a subclass.

Unlike Smalltalk, Ada is a strongly typed

language. This means that all variables and
parameters must be declared to be of a single
specific type. This allows an Ada compiler to

check statically that only values of the correct
type are being assigned to variables and used as

arguments. The Ada compiler can also always
determine exactly what operation from what
package (if any) is being invoked by a given

call. Operation calls are thus statically bound to
the proper operation. Undefined operation calls

are always discovered at compile-time.

A way around this involves the use of generics.

In addition to their role in creating classes of
packages, generics also allow a package to be

parameterized with type and subprogram
parameters. This feature can be used to declare
a package which can use any class with certain
needed operations. Generic facilities can also
be used to allow a class to defer the

implementation of some operations to
subclasses.

Example 3 -- S_mple Space

The class SampleSpace represents random
selection without replacement from a co|Mction
of items. It has the following protocol:

SamoleSvace class protocol

instance creation

data: aCollection Create an instance such
that aCollection is the

sample space.



SamDleSpace instance t)rotocol

accessing

next

next: anlnteger

Answer the next element
chosen at random from

the sample space,
removing it from the

space.

Answer an ordered

collection of anlnteger

number of selections

from the sample space.

testing

lsEmpty Answer whether any
items remain to be

sampled.

size Answer the number of

items remaining to be

sampled.

This protocol does not specify exactly what
kind of collectionmust be used for the sample

space. The classdefinitionis:

class name SampleSpace

superclass Object
instance variable names data

rand

class methods

instance creation

data: aCollectlon

"super new setData: aCollection.

instance methods

accessing

next

t item l
self isEmpty if True:

[self error 'no values exist in the sample space'].
item <- data at:

(rand next * data size) truncated + 1.
data remove: item.
" item
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next: anInteger
I aCoilection I .........
aCoilection_ .... -......

<- OrderedCollection new: anlnteger.

anlnteger timesRepeat:
[aCollection addLast: self next].

"aCollection

testing

lsEmpty
"self size= 0

size

^data size

private

setData: aCollection

data <- aCollection.
rand <= Random new

Note that local variables in methods are listed

between vertical bars at. the beginning of the
method. Also, the definition of SampleSapce
uses an instance of the Smalltalk system class

Random to generate_ random numbers. In the
methods for "next" and "size", SampleSpace
sends the messages 'at:", "size" and "remove:" to
the instance variable "data" which holds the

collection of sample space items. This means

that any object which can respond to "at:", "size"
and "remove:" can serve as the collection. This

object could be an instance of a Smailtalk
system class such as Array, or it could be an
instance of a user-defined class. An example of

the use of SampleSpace i_ shuffling a deck of

cards:

class name CardDeck

superclass Object
instance variable names cards

shuffle

I sample I _: _ ....
sample <- SampleSpace data: cards.
cards <- sample next: cards size

An-Ada generic Sample_SPace package needs a

COLLECTION type and At, Size and Remove
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operations. A specification for this package is:

generic

type COLLECTIONTYPE is private;
type ELEMENTTYPE is private;

with function At

( Collection: COLLECTION_TYPE;
Index : POSITIVE )

return ELEMENT__TYPE;
with function Size

( Collection : COLLECTION_TYPE )

return ELEMENT._TYPE;
with procedure Remove

( Collection : In out COLLECTIONTYPE;
Element : in ELEMENT_TYPE );

package Sample_Space is

Empty : exception;

type ELEMENT LIST is
array (NATURAL range <>)

of ELEMENT__TYPE;

-- Initialization

procedure Set

( Data : in COLLECTION=TYPE );

-- Accessing

function Next return ELEMENT_TYPE;
function Next ( Number : NATURAL )

return ELEMENT_LIST;

-- Testing

function IsEmpty return BOOLEAN;
function Size return NATURAL;

end Sample_Space;

Package Sample_Space uses the generic facility
both to parameterize itself and to allow a class
of objects (as discussed in Section 2). It would
also have been possible to define a generic

Sample Space Handler package with a
SAMPLE SPACE type. This would have

allowed sample spaces to be passed as data, an
ability which is not really needed for the
present example.

The body of Sample_Space is:

with Random;
package body Sample_Space is

-= Instance variable

Sample_Data : COLLECTIONTYPE;

-= Initialization

procedure Set

( Data : COLLECTION_TYPE ) is
begin

SampleData :., Data;
end Set;

-- Accessing
function Next return ELEMENT TYPE Is

Item : ELEMENTTYPE;
begin

if Is Empty then
raise Empty;

end if;

Item "- At ( Sample Data, Index =>
NATURAL((Random.Value*Size)+l ) );

Remove

( Collection ffi> SampleData,
Element => Item );

return Item;
end Next;

function Next ( Number : NATURAL )
return ELEMENT LIST is

List : ELEMENT_LIST(I .. Number);
begin

for I in ! .. Number loop

List(I) := Next;
end loop;
return List;

end Next; i

-- Testing

function IsEmpty return BOOLEAN is
begin

return (Size ffi 0);

end IsEmpty;

function Size return NATURAL is

begin

return Size(Sample_Data);
end Size;

end Sample_Space;

The Sample_Space package body assumes the
availability of a package Random to generate

random numbers. Sample_Space could then be

4-41
5207



used to shuffle

CARDDECK:

an instance of private type

with Sample Space;
package body Card_Deck_Handler Is

package Sample is new Sampie_..Space
( COLLECTION_TYPE -> CARD_DECK,

ELEMENTTYPE -> CARD_TYPE,
At -> Card,

Size -> Deck_Size,
Remove -> Remove Card );

i

procedure Shuffle

( Cards : in out CARD__DECK ) is
begin

Sample.Set (Data ffi> Cards),

Cards :- CARDDECK
(Sample .Next(DeckSize(Cards)));

end Shuffle;

end Card_Deck_Handler;

Generic package SampleSpace is a template
for a general class of sample spaces. Since a

COLLECTIONTYPE must be specified when

Sample_Space is instantiated, each instance of
this class can only handle a single type of

collection for sampling. Thus an Ada compiler
can still perform static type checking for each

instantiation of generic packages.

The dynamic binding and lack of typing in
Smalltalk allow an instance of a subclass to be

used anyplace an instance of its superclass may
be used. As mentioned at the end of Section 3

the Ada type system does not allow this because
it views all private types as distinct and

incompatible, The above generic technique can
help with this problem, also. A generic package
(or other program unit) which is parameterized
by the types and operations it needs will be able

to use any type with the necessary operations.
Thus if the private type representing some class

can be plugged into a generic, then a subclass
type can also be plugged into that same generic.

However, the generic must be instantiated
separately for each type. There is no easy way

5207

in Ada have a true polymorphic procedure, that
is, a single procedure With an argument which

accepts values of different types.

5. Conclusion

Smalltalk and Ada are based on quite different
philosophies. Smalltalk is designed to make it

easier to program and to incrementally build
and modify systems. Ada, on the other hand,
purposefully places certain additional
obligations on the programmer so that the final
system will be more reliable and more

maintainable. The Ada philosophy takes a
much more life-cycle-oriented approach,

recognizing that most costly phase of software
development is maintenance, not coding.

If the languages have such different bases, then

why consider using object-oriented ideas for

Ada? The answer is that object-oriented

concepts really apply to more than just

programming. In Ada circles,these concepts

are usually applied to design [Booch 83,

Seidewitz 86a, Seidewitz 86b]. The object-

oriented viewpoint is crucial to designing for

effect use of Ada's package facility.Further,

the object-oriented approach can be a general

way of thinking about software systems which

can be applied from system specification

through testing. This fitsin quite well with the

Ada life-cyclephilosophy [Booch 86, Stark 87].

Still,Ada has some unfortunate drawbacks for

object-oriented programming, especiallyin its

lack of support for inheritance. As an object-

oriented programming language Smalitalk is in

many ways clearlysuperior to Ada. However,

as a life-cycle software engineering language

Ada has great advantages. "Static strong typing
is crucial to increasing the reliability of
software. Even with a good testing

methodology, large amounts of code will not be
thoroughly tested because it is only executed in
rare combinations of situitions. But when a

system is running continuously for years, any
errors that remain in these sections of code will

almost certainly occur. This is especially true
for the embedded real-time systems which were

Ada's original mandate. In Aria, all sections of
code are checked by the compiler, and many

errors can be caught before the testing phase
due to static type checking and static operation

binding.
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It is possible to support inheritance and even
polymorphism within a statically typed language

(as in, for example, Eiffel [Meyer 86, Meyer
87]). Inheritance might be added to Ada
without too much change to the design of the

language. Incorporation of polymorphism
would be much more difficult, and probably

require a philosophical change in the Ada
language design. However, even with these

deficiencies for object-oriented programming,
Ada still provides a useful vehicle for applying
object-oriented concepts throughout the
software development life-cycle.

Much of the above discussion also applies to

other modular languages such as Modula-2
(though Modula-2 does not directly support

genericity). As these languages become more
and more widely used it will be increasingly
important to apply to them the experience in

object-oriented software development gained
from Smalltalk and other object-oriented
languages.
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